scholarly journals Battacin (Octapeptin B5), a New Cyclic Lipopeptide Antibiotic from Paenibacillus tianmuensis Active against Multidrug-Resistant Gram-Negative Bacteria

2011 ◽  
Vol 56 (3) ◽  
pp. 1458-1465 ◽  
Author(s):  
Chao-Dong Qian ◽  
Xue-Chang Wu ◽  
Yi Teng ◽  
Wen-Peng Zhao ◽  
Ou Li ◽  
...  

ABSTRACTHospital-acquired infections caused by drug-resistant bacteria are a significant challenge to patient safety. Numerous clinical isolates resistant to almost all commercially available antibiotics have emerged. Thus, novel antimicrobial agents, specifically those for multidrug-resistant Gram-negative bacteria, are urgently needed. In the current study, we report the isolation, structure elucidation, and preliminary biological characterization of a new cationic lipopeptide antibiotic, battacin or octapeptin B5, produced from aPaenibacillus tianmuensissoil isolate. Battacin kills bacteriain vitroand has potent activity against Gram-negative bacteria, including multidrug-resistant and extremely drug-resistant clinical isolates. Hospital strains ofEscherichia coliandPseudomonas aeruginosaare the pathogens most sensitive to battacin, with MICs of 2 to 4 μg/ml. The ability of battacin to disrupt the outer membrane of Gram-negative bacteria is comparable to that of polymyxin B, the last-line therapy for infections caused by antibiotic-resistant Gram-negative bacteria. However, the capacity of battacin to permeate bacterial plasma membranes is less extensive than that of polymyxin B. The bactericidal kinetics of battacin correlate with the depolarization of the cell membrane, suggesting that battacin kills bacteria by disrupting the cytoplasmic membrane. Other studies indicate that battacin is less acutely toxic than polymyxin B and has potentin vivobiological activity againstE. coli. Based on the findings of the current study, battacin may be considered a potential therapeutic agent for the treatment of infections caused by antibiotic-resistant Gram-negative bacteria.

2020 ◽  
Vol 64 (12) ◽  
Author(s):  
Jitender Yadav ◽  
Sana Ismaeel ◽  
Ayub Qadri

ABSTRACT Polymyxin B, used to treat infections caused by antibiotic-resistant Gram-negative bacteria, produces nephrotoxicity at its current dosage. We show that a combination of nonbactericidal concentration of this drug and lysophosphatidylcholine (LPC) potently inhibits growth of Salmonella and at least two other Gram-negative bacteria in vitro. This combination makes bacterial membrane porous and causes degradation of DnaK, the regulator of protein folding. Polymyxin B-LPC combination may be an effective and safer regimen against drug-resistant bacteria.


2016 ◽  
Vol 82 (12) ◽  
pp. 3605-3610 ◽  
Author(s):  
Andreas F. Wendel ◽  
Sofija Ressina ◽  
Susanne Kolbe-Busch ◽  
Klaus Pfeffer ◽  
Colin R. MacKenzie

ABSTRACTReports of outbreaks concerning carbapenemase-producing Gram-negative bacteria in which the main source of transmission is the hospital environment are increasing. This study describes the results of environmental sampling in a protracted polyspecies metallo-beta-lactamase GIM-1 outbreak driven by plasmids and bacterial clones ofEnterobacter cloacaeandPseudomonas aeruginosain a tertiary care center. Environmental sampling targeting wet locations (especially sinks) was carried out on a surgical intensive care unit and on a medical ward on several occasions in 2012 and 2013. We were able to demonstrate 43blaGIM-1-carrying bacteria (mainly nonfermenters but alsoEnterobacteriaceae) that were either related or unrelated to clinical strains in 30 sinks and one hair washbasin. GIM-1 was found in 12 different species, some of which are described here as carriers of GIM-1. Forty out of 43 bacteria displayed resistance to carbapenems and, in addition, to various non-beta-lactam antibiotics. Colistin resistance was observed in twoE. cloacaeisolates with MICs above 256 mg/liter. TheblaGIM-1gene was harbored in 12 different class 1 integrons, some without the typical 3′ end. TheblaGIM-1gene was localized on plasmids in five isolates.In vitroplasmid transfer by conjugation was successful in one isolate. The environment, with putatively multispecies biofilms, seems to be an important biological niche for multidrug-resistant bacteria and resistance genes. Biofilms may serve as a “melting pot” for horizontal gene transfer, for dissemination into new species, and as a reservoir to propagate future hospital outbreaks.IMPORTANCEIn Gram-negative bacteria, resistance to the clinically relevant broad-spectrum carbapenem antibiotics is a major public health concern. Major reservoirs for these resistant organisms are not only the gastrointestinal tracts of animals and humans but also the (hospital) environment. Due to the difficulty in eradicating biofilm formation in the latter, a sustained dissemination of multidrug-resistant bacteria from the environment can occur. In addition, horizontal transfer of resistance genes on mobile genetic elements within biofilms adds to the total “resistance gene pool” in the environment. To gain insight into the transmission pathways of a rare and locally restricted carbapenemases resistance gene (blaGIM-1), we analyzed the genetic background of theblaGIM-1gene in environmental bacteria during a long-term polyspecies outbreak in a German hospital.


2020 ◽  
Vol 64 (7) ◽  
Author(s):  
José Manuel Ortiz de la Rosa ◽  
Patrice Nordmann ◽  
Laurent Poirel

ABSTRACT Many transferable quinolone resistance mechanisms have been identified in Gram-negative bacteria. The plasmid-encoded 65-amino-acid-long ciprofloxacin-modifying enzyme CrpP was recently identified in Pseudomonas aeruginosa isolates. We analyzed a collection of 100 clonally unrelated and multidrug-resistant P. aeruginosa clinical isolates, among which 46 were positive for crpP-like genes, encoding five CrpP variants conferring variable levels of reduced susceptibility to fluoroquinolones. These crpP-like genes were chromosomally located as part of pathogenicity genomic islands.


2015 ◽  
Vol 12 (3) ◽  
Author(s):  
Megan Bollin ◽  
Ellen Jensen ◽  
David Mitchell

The purpose of this study was to investigate the possibility that antibiotic resistant bacteria could be isolated and identified in aquatic ecosystems in the lakes on the campus of Saint John’s University and the nearby Sauk and Watab Rivers. A total of 125 isolates were collected. Seventy-nine percent of the isolates were gram negative rods. Twenty-six isolates that were resistant to seven or more antibiotics were selected for further investigation. The 26 isolates were all gram negative and members of seven different genera with Flavobacterium and Acinetobacter being the most common. Resistance coefficients were calculated based on optical density values relative to cells grown without antibiotics. Multi-drug resistant, gram negative bacteria were shown to be common in aquatic environments in central Minnesota.


2017 ◽  
Vol 61 (9) ◽  
Author(s):  
Mariana Castanheira ◽  
Michael D. Huband ◽  
Rodrigo E. Mendes ◽  
Robert K. Flamm

ABSTRACT We evaluated the activity of meropenem-vaborbactam against contemporary nonfastidious Gram-negative clinical isolates, including Enterobacteriaceae isolates with resistance phenotypes and carbapenemase genotypes. Meropenem-vaborbactam (inhibitor at 8 μg/ml) and comparators were susceptibility tested by reference broth microdilution methods against 14,304 Gram-negative clinical isolates collected worldwide during 2014. Carbapenemase-encoding genes were screened by PCR and sequencing. Meropenem-vaborbactam (MIC50/90, ≤0.015/0.06 μg/ml) inhibited 99.1 and 99.3% of the 10,426 Enterobacteriaceae isolates tested at ≤1 and ≤2 μg/ml, respectively. Meropenem inhibited 97.3 and 97.7% of these isolates at the same concentrations. Against Enterobacteriaceae isolates displaying carbapenem-resistant Enterobacteriaceae (CRE) (n = 265), multidrug-resistant (MDR) (n = 1,210), and extensively drug-resistant (XDR) (n = 161) phenotypes, meropenem-vaborbactam displayed MIC50/90 values of 0.5/32, 0.03/1, and 0.5/32 μg/ml, respectively, whereas meropenem activities were 16/>32, 0.06/32, and 0.5/32 μg/ml, respectively. Among all geographic regions, the highest meropenem-vaborbactam activities were observed for CRE and MDR isolates from the United States (MIC50/90, 0.03/1 and 0.03/0.12 μg/ml, respectively). Meropenem-vaborbactam was very active against 135 KPC producers, and all isolates were inhibited by concentrations of ≤8 μg/ml (133 isolates by concentrations of ≤2 μg/ml). This combination had limited activity against isolates producing metallo-β-lactamases (including 25 NDM-1 and 16 VIM producers) and/or oxacillinases (27 OXA-48/OXA-163 producers) that were detected mainly in Asia-Pacific and some European countries. The activity of meropenem-vaborbactam was similar to that of meropenem alone against Pseudomonas aeruginosa, Acinetobacter spp., and Stenotrophomonas maltophilia. Meropenem-vaborbactam was active against contemporary Enterobacteriaceae isolates collected worldwide, and this combination demonstrated enhanced activity compared to those of meropenem and most comparator agents against CRE isolates and KPC producers, the latter of which are often MDR.


2017 ◽  
Vol 9 (02) ◽  
pp. 081-083 ◽  
Author(s):  
Chinjal A. Panchal ◽  
Sweta Sunil Oza ◽  
Sanjay J. Mehta

Abstract CONTEXT: Metallo-β-lactamase (MBL)-producing bacteria lead to resistance to carbapenem an antibiotic that used as the last resort for treatment of multidrug-resistant bacteria, extended spectrum beta-lactamases, and AmpC β-lactamase-producing Gram-negative bacteria (GNB). The emergence of MBL-producing GNB is challenge to microbiology laboratories because there are no standardized guidelines available to detect them. The aim of this study was to compare four phenotypic methods to detect MBL production in GNB and to determine antibiotic sensitivity of MBL-producing isolates. MATERIALS AND METHODS: A total of 107 clinical isolates of GNB were tested for MBL production. Imipenem (IPM)-resistant GNB were taken as positive for MBL screening. MBL detection was done using ethylene diamine tetra acetic acid (EDTA) as MBL inhibitor. Four phenotypic methods were evaluated: (1) Combined disk synergy test (CDST) with 0.5M EDTA (CDST-0.5 M EDTA), (2) CDST with 0.1 M EDTA (CDST-0.1 M EDTA), (3) double-disk synergy test (DDST) with 0.5M EDTA (DDST-0.5 M EDTA), and (4) DDST with 0.1 M EDTA (DDST-0.1 M EDTA). RESULTS: Out of 107 GNB, 30 were resistant to IPM considered as screening positive. Out of 30, 21 (70%) isolates were MBL positive by CDST-0.1 M EDTA, 19 (63.33%) by CDST-0.5M EDTA, 17 (56.67%) by DDST-0.1 M EDTA, and 16 (53.33%) by DDST-0.5M EDTA. All MBL-producing Gram-negative Bacilli were resistant to ampicillin/sulbactam. Polymyxin B was found to be the most sensitive drug. CONCLUSION: CDST-0.1 M EDTA is the most sensitive method MBL detection. The detection of MBL-producing GNB is very important to control spread of the resistance.


2019 ◽  
Vol 63 (4) ◽  
Author(s):  
Ronald Domalaon ◽  
P. Malaka De Silva ◽  
Ayush Kumar ◽  
George G. Zhanel ◽  
Frank Schweizer

ABSTRACTThere is an urgent need for new therapies to overcome antimicrobial resistance especially in Gram-negative bacilli (GNB). Repurposing old U.S. Food and Drug Administration-approved drugs as complementary agents to existing antibiotics in a synergistic combination presents an attractive strategy. Here, we demonstrate that the anthelmintic drug niclosamide selectively synergized with the lipopeptide antibiotic colistin against colistin-susceptible but more importantly against colistin-resistant GNB, including clinical isolates that harbor themcr-1gene. Breakpoints for colistin susceptibility in resistant Gram-negative bacilli were reached in the presence of 1 μg/ml (3 μM) niclosamide. Reversal of colistin resistance was also observed in combinations of niclosamide and polymyxin B. Enhanced bacterial killing was evident for the combination, in comparison to colistin monotherapy, against resistantPseudomonas aeruginosa,Acinetobacter baumannii,Klebsiella pneumoniae,Escherichia coli, andEnterobacter cloacae. Accumulating evidence in the literature, along with our results, strongly suggests the potential for the combination of niclosamide and colistin to treat colistin-resistant Gram-negative bacillary infections. Our finding is significant since colistin is an antibiotic of last resort for multidrug-resistant Gram-negative bacterial infections that are nonresponsive to conventional treatments. With the recent global dissemination of plasmid-encoded colistin resistance, the addition of niclosamide to colistin therapy may hold the key to overcome colistin resistance.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shira Mandel ◽  
Janna Michaeli ◽  
Noa Nur ◽  
Isabelle Erbetti ◽  
Jonathan Zazoun ◽  
...  

AbstractNew antimicrobial agents are urgently needed, especially to eliminate multidrug resistant Gram-negative bacteria that stand for most antibiotic-resistant threats. In the following study, we present superior properties of an engineered antimicrobial peptide, OMN6, a 40-amino acid cyclic peptide based on Cecropin A, that presents high efficacy against Gram-negative bacteria with a bactericidal mechanism of action. The target of OMN6 is assumed to be the bacterial membrane in contrast to small molecule-based agents which bind to a specific enzyme or bacterial site. Moreover, OMN6 mechanism of action is effective on Acinetobacter baumannii laboratory strains and clinical isolates, regardless of the bacteria genotype or resistance-phenotype, thus, is by orders-of-magnitude, less likely for mutation-driven development of resistance, recrudescence, or tolerance. OMN6 displays an increase in stability and a significant decrease in proteolytic degradation with full safety margin on erythrocytes and HEK293T cells. Taken together, these results strongly suggest that OMN6 is an efficient, stable, and non-toxic novel antimicrobial agent with the potential to become a therapy for humans.


2021 ◽  
Vol 70 (4) ◽  
Author(s):  
Balaram Khamari ◽  
Prakash Kumar ◽  
Bulagonda Eswarappa Pradeep

Introduction. Nitrofurantoin is one of the preferred antibiotics in the treatment of uropathogenic multidrug-resistant (MDR) infections. However, resistance to nitrofurantoin in extensively drug-resistant (XDR) bacteria has severely limited the treatment options. Gap statement. Information related to co-resistance or collateral sensitivity (CS) with reference to nitrofurantoin resistant bacteria is limited. Aim. To study the potential of nitrofurantoin resistance as an indicator of the XDR phenotype in Enterobacteriaceae . Methods. One hundred (45 nitrofurantoin-resistant, 21 intermediately resistant and 34 nitrofurantoin-susceptible) Enterobacteriaceae were analysed in this study. Antibiotic susceptibility testing (AST) against nitrofurantoin and 17 other antimicrobial agents across eight different classes was performed by using the Vitek 2.0 system. The isolates were screened for the prevalence of acquired antimicrobial resistance (AMR) and efflux pump genes by PCR. Results. In total, 51 % of nitrofurantoin-resistant and 28 % of intermediately nitrofurantoin resistant isolates exhibited XDR characteristics, while only 3 % of nitrofurantoin-sensitive isolates were XDR (P=0.0001). Significant co-resistance was observed between nitrofurantoin and other tested antibiotics (β-lactam, cephalosporin, carbapenem, aminoglycoside and tetracycline). Further, the prevalence of AMR and efflux pump genes was higher in the nitrofurantoin-resistant strains compared to the susceptible isolates. A strong association was observed between nitrofurantoin resistance and the presence of bla PER-1, bla NDM-1, bla OXA-48, ant(2) and oqxA-oqxB genes. Tigecycline (84 %) and colistin (95 %) were the only antibiotics to which the majority of the isolates were susceptible. Conclusion. Nitrofurantoin resistance could be an indicator of the XDR phenotype among Enterobacteriaceae , harbouring multiple AMR and efflux pump genes. Tigecycline and colistin are the only antibiotics that could be used in the treatment of such XDR infections. A deeper understanding of the co-resistance mechanisms in XDR pathogens and prescription of AST-based appropriate combination therapy may help mitigate this problem.


Author(s):  
Yali Yu ◽  
Yiyi Kong ◽  
Jing Ye ◽  
Aiguo Wang ◽  
Wenteng Si

Introduction. Prosthetic joint infection (PJI) is a serious complication after arthroplasty, which results in high morbidity, prolonged treatment and considerable healthcare expenses in the absence of accurate diagnosis. In China, microbiological data on PJIs are still scarce. Hypothesis/Gap Statement. The incidence of PJI is increasing year by year, and the proportion of drug-resistant bacteria infection is nicreasing, which brings severe challenges to the treatment of infection. Aim. This study aimed to identify the pathogens in PJIs, multi-drug resistance, and evaluate the effect of the treatment regimen in patients with PJI. Methodology. A total of 366 consecutive cases of PJI in the hip or knee joint were admitted at the Orthopedic Surgery Center in Zhengzhou, China from January 2012 to December 2018. Infections were confirmed in accordance with the Infectious Diseases Society of America and the Musculoskeletal Infection Society (MSIS) criteria. Concurrently, patient demographic data, incidence and antibiotic resistance were investigated. Statistical differences were analysed using Fisher’s exact test or chi-square test. Results. Altogether, 318 PJI cases satisfying the inclusion criteria were enrolled in this study, including 148 with hip PJIs and 170 with knee PJIs. The average age of patients with hip PJIs was lesser than that of patients with knee PJIs (56.4 vs. 68.6 years). Meanwhile, coagulase-negative staphylococcus (CNS, n=81, 25.5 %) was the predominant causative pathogen, followed by Staphylococcus aureus (n=67, 21.1 %). Methicillin-resistant Staphylococcus (MRS) was identified in 28.9 % of PJI patients. In addition, fungus accounted for 4.8 % (n=15), non-tuberculosis mycobacterium accounted for 1.6 % (n=5), polymicrobial pathogens accounted for 21.7 % (n=69), and Gram-negative bacteria accounted for 7.9 % (n=25) of the total infections. The results of antibiotic susceptibility testing showed that gentamicin and clindamycin β-lactam antibiotics were poorly susceptible to Gram-positive isolates, but they were sensitive to rifampicin, linezolid and vancomycin. While antibiotics such as amikacin and imipenem were effective against Gram-negative bacteria, there was a high resistance rate of other pathogens to gentamicin, clindamycin and some quinolone antibacterial drugs. Empirical antibiotic treatment should combine vancomycin and cephalosporin, levofloxacin or clindamycin. When the pathogen is confirmed, the treatment should be individualized. Conclusions. The prevalence of culture-negative PJIs is still very high. Gram-positive bacteria are still the main type of pathogens that cause PJIs. Attention should be paid to the high incidence of MRS, such as MRSA and MR-CNS, among PJI patients. Empirical antibiotic treatment should cover Gram-positive isolates, especially Staphylococcus .


Sign in / Sign up

Export Citation Format

Share Document