scholarly journals Antiviral Effects of Small Interfering RNA Simultaneously Inducing RNA Interference and Type 1 Interferon in Coxsackievirus Myocarditis

2012 ◽  
Vol 56 (7) ◽  
pp. 3516-3523 ◽  
Author(s):  
Jeonghyun Ahn ◽  
Ara Ko ◽  
Eun Jung Jun ◽  
Minah Won ◽  
Yoo Kyum Kim ◽  
...  

ABSTRACTAntiviral therapeutics are currently unavailable for treatment of coxsackievirus B3, which can cause life-threatening myocarditis. A modified small interfering RNA (siRNA) containing 5′-triphosphate, 3p-siRNA, was shown to induce RNA interference and interferon activation. We aimed to develop a potent antiviral treatment using CVB3-specific 3p-siRNA and to understand its underlying mechanisms. Virus-specific 3p-siRNA was superior to both conventional virus-specific siRNA with an empty hydroxyl group at the 5′ end (OH-siRNA) and nonspecific 3p-siRNA in decreasing viral replication and subsequent cytotoxicity. A single administration of 3p-siRNA dramatically attenuated virus-associated pathological symptoms in mice with no signs of toxicity, and their body weights eventually reached the normal range. Myocardial inflammation and fibrosis were rare, and virus production was greatly reduced. A nonspecific 3p-siRNA showed relatively less protective effect under identical conditions, and a virus-specific OH-siRNA showed no protective effects. We confirmed that virus-specific 3p-siRNA simultaneously activated target-specific gene silencing and type I interferon signaling. We provide a clear proof of concept that coxsackievirus B3-specific 3p-siRNA has 2 distinct modes of action, which significantly enhance antiviral activities with minimal organ damage. This is the first direct demonstration of improved antiviral effects with an immunostimulatory virus-specific siRNA in coxsackievirus myocarditis, and this method could be applied to many virus-related diseases.

2012 ◽  
Vol 163 (1) ◽  
pp. 183-189 ◽  
Author(s):  
Ying Luan ◽  
Hai-Li Dai ◽  
Dan Yang ◽  
Lin Zhu ◽  
Tie-Lei Gao ◽  
...  

Open Medicine ◽  
2011 ◽  
Vol 6 (2) ◽  
pp. 137-147 ◽  
Author(s):  
Anubrata Ghosal ◽  
Ahmad Kabir ◽  
Abul Mandal

AbstractRNA interference is a technique that has become popular in the past few years. This is a biological method to detect the activity of a specific gene within a cell. RNAi is the introduction of homologous double stranded RNA to specifically target a gene’s product resulting in null or hypomorphic phenotypes. This technique involves the degradation of specific mRNA by using small interfering RNA. Both microRNA (miRNA) and small interfering RNA (siRNA) are directly related to RNA interference. RNAi mechanism is being explored as a new technique for suppressing gene expression. It is an important issue in the treatment of various diseases. This review considers different aspects of RNAi technique including its history of discovery, molecular mechanism, gene expression study, advantages of this technique against previously used techniques, barrier associated with this technique, and its therapeutic application.


2005 ◽  
Vol 79 (13) ◽  
pp. 8620-8624 ◽  
Author(s):  
Jeonghyun Ahn ◽  
Eun Seok Jun ◽  
Hui Sun Lee ◽  
Seung Yong Yoon ◽  
DongHou Kim ◽  
...  

ABSTRACT We examined the ability of small interfering RNAs (siRNAs) to disrupt infection by coxsackievirus B3 (CVB3). The incorporation of siRNAs dramatically decreased cell death in permissive HeLa cells in parallel with a reduction in viral replication. Three of four siRNAs had potent anti-CVB3 activity. The present study thus demonstrates that the antiviral effect is due to the downregulation of viral replication. In addition, an effective CVB3-specific siRNA had similar antiviral effects in other related enteroviruses possessing sequence homology in the targeted region. Because the CVB3-specific siRNA is effective against other enteroviruses, siRNAs have potential for a universal antienterovirus strategy.


2007 ◽  
Vol 18 (11) ◽  
pp. 4669-4680 ◽  
Author(s):  
Hiroshi Yamada ◽  
Emiko Ohashi ◽  
Tadashi Abe ◽  
Norihiro Kusumi ◽  
Shun-AI Li ◽  
...  

Amphiphysin 1 is involved in clathrin-mediated endocytosis. In this study, we demonstrate that amphiphysin 1 is essential for cellular phagocytosis and that it is critical for actin polymerization. Phagocytosis in Sertoli cells was induced by stimulating phosphatidylserine receptors. This stimulation led to the formation of actin-rich structures, including ruffles, phagocytic cups, and phagosomes, all of which showed an accumulation of amphiphysin 1. Knocking out amphiphysin 1 by RNA interference in the cells resulted in the reduction of ruffle formation, actin polymerization, and phagocytosis. Phagocytosis was also drastically decreased in amph 1 (−/−) Sertoli cells. In addition, phosphatidylinositol-4,5-bisphosphate–induced actin polymerization was decreased in the knockout testis cytosol. The addition of recombinant amphiphysin 1 to the cytosol restored the polymerization process. Ruffle formation in small interfering RNA-treated cells was recovered by the expression of constitutively active Rac1, suggesting that amphiphysin 1 functions upstream of the protein. These findings support that amphiphysin 1 is important in the regulation of actin dynamics and that it is required for phagocytosis.


FEBS Journal ◽  
2014 ◽  
Vol 282 (1) ◽  
pp. 153-173 ◽  
Author(s):  
Sumit G. Gandhi ◽  
Indira Bag ◽  
Saswati Sengupta ◽  
Manika Pal-Bhadra ◽  
Utpal Bhadra

2003 ◽  
Vol 77 (10) ◽  
pp. 6066-6069 ◽  
Author(s):  
Allison H. S. Hall ◽  
Kenneth A. Alexander

ABSTRACT The human papillomavirus oncoproteins E6 and E7 promote cell proliferation and contribute to carcinogenesis by interfering with the activities of cellular tumor suppressors. We used a small interfering RNA molecule targeting the E7 region of the bicistronic E6 and E7 mRNA to induce RNA interference, thereby reducing expression of E6 and E7 in HeLa cells. RNA interference of E6 and E7 also inhibited cellular DNA synthesis and induced morphological and biochemical changes characteristic of cellular senescence. These results demonstrate that reducing E6 and E7 expression is sufficient to cause HeLa cells to become senescent.


Endocrinology ◽  
2009 ◽  
Vol 150 (5) ◽  
pp. 2463-2471 ◽  
Author(s):  
Kyung-Bon Lee ◽  
Anilkumar Bettegowda ◽  
Gabbine Wee ◽  
James J. Ireland ◽  
George W. Smith

Previous studies established a positive relationship between oocyte competence and follistatin mRNA abundance. Herein, we used the bovine model to test the hypothesis that follistatin plays a functional role in regulation of early embryogenesis. Treatment of early embryos with follistatin during in vitro culture (before embryonic genome activation) resulted in a dose-dependent decrease in time to first cleavage, increased numbers of blastocysts, and increased blastocyst total and trophectoderm cell numbers. To determine the requirement of endogenous follistatin for early embryogenesis, follistatin ablation/replacement studies were performed. Microinjection of follistatin small interfering RNA into zygotes reduced follistatin mRNA and protein and was accompanied by a reduction in number of embryos developing to eight- to 16-cell and blastocyst stages and reduced blastocyst total and trophectoderm cell numbers. Effects of follistatin ablation were rescued by culture of follistatin small interfering RNA-injected embryos in the presence of exogenous follistatin. To investigate whether follistatin regulation of early embryogenesis is potentially mediated via inhibition of endogenous activin activity, the effects of treatment of embryos with exogenous activin, SB-431542 (inhibitor of activin, TGF-β, and nodal type I receptor signaling) and follistatin plus SB-431542 were investigated. Activin treatment mimicked positive effects of follistatin on time to first cleavage and blastocyst development, whereas negative effects of SB-431542 treatment were observed. Stimulatory effects of follistatin on embryogenesis were not blocked by SB-431542 treatment. Results support a functional role for oocyte-derived follistatin in bovine early embryogenesis and suggest that observed effects of follistatin are likely not mediated by classical inhibition of activin activity.


2018 ◽  
Vol 115 (12) ◽  
pp. E2696-E2705 ◽  
Author(s):  
Jiahe Li ◽  
Connie Wu ◽  
Wade Wang ◽  
Yanpu He ◽  
Elad Elkayam ◽  
...  

Small interfering RNA (siRNA) represents a promising class of inhibitors in both fundamental research and the clinic. Numerous delivery vehicles have been developed to facilitate siRNA delivery. Nevertheless, achieving highly potent RNA interference (RNAi) toward clinical translation requires efficient formation of RNA-induced gene-silencing complex (RISC) in the cytoplasm. Here we coencapsulate siRNA and the central RNAi effector protein Argonaute 2 (Ago2) via different delivery carriers as a platform to augment RNAi. The physical clustering between siRNA and Ago2 is found to be indispensable for enhanced RNAi. Moreover, by utilizing polyamines bearing the same backbone but distinct cationic side-group arrangements of ethylene diamine repeats as the delivery vehicles, we find that the molecular structure of these polyamines modulates the degree of siRNA/Ago2-mediated improvement of RNAi. We apply this strategy to silence the oncogene STAT3 and significantly prolong survival in mice challenged with melanoma. Our findings suggest a paradigm for RNAi via the synergistic coassembly of RNA with helper proteins.


Sign in / Sign up

Export Citation Format

Share Document