scholarly journals Hybridization analysis of three chloramphenicol resistance determinants from Clostridium perfringens and Clostridium difficile.

1989 ◽  
Vol 33 (9) ◽  
pp. 1569-1574 ◽  
Author(s):  
J I Rood ◽  
S Jefferson ◽  
T L Bannam ◽  
J M Wilkie ◽  
P Mullany ◽  
...  
1998 ◽  
Vol 42 (7) ◽  
pp. 1563-1567 ◽  
Author(s):  
Dena Lyras ◽  
Christine Storie ◽  
Andrea S. Huggins ◽  
Paul K. Crellin ◽  
Trudi L. Bannam ◽  
...  

ABSTRACT The chloramphenicol resistance gene catD fromClostridium difficile was shown to be encoded on the transposons Tn4453a and Tn4453b, which were structurally and functionally related to Tn4451 fromClostridium perfringens. Tn4453a and Tn4453b excised precisely from recombinant plasmids, generating a circular form, as is the case for Tn4451. Evidence that this process is mediated by Tn4453-encodedtnpX genes was obtained from experiments which showed that in trans these genes complemented a Tn4451tnpXΔ1 mutation for excision. Nucleotide sequencing showed that the joint of the circular form generated by the excision of Tn4453a and Tn4453b was similar to that from Tn4451. These results suggest that the Tn4453-encoded TnpX proteins bind to similar DNA target sequences and function in a manner comparable to that of TnpX from Tn4451. Furthermore, it has been shown that Tn4453a and Tn4453b can be transferred to suitable recipient cells by RP4 and therefore are mobilizable transposons. It is concluded that, like Tn4451, they must encode a functional tnpZ gene and a targetoriT or RSA site. The finding that related transposable elements are present in C. difficile andC. perfringens has implications for the evolution and dissemination of antibiotic resistance genes and the mobile elements on which they are found within the clostridia.


mBio ◽  
2019 ◽  
Vol 10 (2) ◽  
Author(s):  
Kate E. Dingle ◽  
Xavier Didelot ◽  
T. Phuong Quan ◽  
David W. Eyre ◽  
Nicole Stoesser ◽  
...  

ABSTRACT The increasing clinical importance of human infections (frequently severe) caused by Clostridium difficile PCR ribotype 078 (RT078) was first reported in 2008. The severity of symptoms (mortality of ≤30%) and the higher proportion of infections among community and younger patients raised concerns. Farm animals, especially pigs, have been identified as RT078 reservoirs. We aimed to understand the recent changes in RT078 epidemiology by investigating a possible role for antimicrobial selection in its recent evolutionary history. Phylogenetic analysis of international RT078 genomes (isolates from 2006 to 2014, n = 400), using time-scaled, recombination-corrected, maximum likelihood phylogenies, revealed several recent clonal expansions. A common ancestor of each expansion had independently acquired a different allele of the tetracycline resistance gene tetM. Consequently, an unusually high proportion (76.5%) of RT078 genomes were tetM positive. Multiple additional tetracycline resistance determinants were also identified (including efflux pump tet40), frequently sharing a high level of nucleotide sequence identity (up to 100%) with sequences found in the pig pathogen Streptococcus suis and in other zoonotic pathogens such as Campylobacter jejuni and Campylobacter coli. Each RT078 tetM clonal expansion lacked geographic structure, indicating rapid, recent international spread. Resistance determinants for C. difficile infection-triggering antimicrobials, including fluoroquinolones and clindamycin, were comparatively rare in RT078. Tetracyclines are used intensively in agriculture; this selective pressure, plus rapid, international spread via the food chain, may explain the increased RT078 prevalence in humans. Our work indicates that the use of antimicrobials outside the health care environment has selected for resistant organisms, and in the case of RT078, has contributed to the emergence of a human pathogen. IMPORTANCE Clostridium difficile PCR ribotype 078 (RT078) has multiple reservoirs; many are agricultural. Since 2005, this genotype has been increasingly associated with human infections in both clinical settings and the community. Investigations of RT078 whole-genome sequences revealed that tetracycline resistance had been acquired on multiple independent occasions. Phylogenetic analysis revealed a rapid, recent increase in numbers of closely related tetracycline-resistant RT078 (clonal expansions), suggesting that tetracycline selection has strongly influenced its recent evolutionary history. We demonstrate recent international spread of emergent, tetracycline-resistant RT078. A similar tetracycline-positive clonal expansion was also identified in unrelated nontoxigenic C. difficile, suggesting that this process may be widespread and may be independent of disease-causing ability. Resistance to typical C. difficile infection-associated antimicrobials (e.g., fluoroquinolones, clindamycin) occurred only sporadically within RT078. Selective pressure from tetracycline appears to be a key factor in the emergence of this human pathogen and the rapid international dissemination that followed, plausibly via the food chain.


2011 ◽  
Vol 31 (6) ◽  
pp. 505-510 ◽  
Author(s):  
Ricardo T. Lippke ◽  
Sandra M. Borowski ◽  
Sandra M.T. Marques ◽  
Suelen O. Paesi ◽  
Laura L. Almeida ◽  
...  

A case-control study was carried out in litters of 1 to 7-day-old piglets to identify the main infectious agents involved with neonatal diarrhea in pigs. Fecal samples (n=276) from piglets were collected on pig farms in the State of Rio Grande do Sul, Brazil, from May to September 2007. Litters with diarrhea were considered cases (n=129) and normal litters (n=147) controls. The samples were examined by latex agglutination test, PAGE, conventional isolating techniques, ELISA, PCR, and microscopic methods in order to detect rotavirus, bacterial pathogens (Escherichia coli, Clostridium perfringens type A and C, and Clostridium difficile), and parasites (Coccidian and Cryptosporidium spp.). Outbreaks of diarrhea were not observed during sampling. At least one agent was detected in fecal samples on 25 out of 28 farms (89.3%) and in 16 farms (57.1%) more than one agent was found. The main agents diagnosed were Coccidia (42.86%) and rotavirus (39.29%). The main agents identified in litters with diarrhea were Clostridium difficile (10.6%), Clostridium perfringens type A (8.8%) and rotavirus (7.5%); in control litters, Clostridium difficile (16.6%) and Coccidian (8.5%). Beta hemolytic Escherichia coli and Clostridium perfringens type C were not detected. When compared with controls, no agent was significantly associated with diarrhea in case litters. These findings stress the need for caution in the interpretation of laboratorial diagnosis of mild diarrhea in neonatal pigs, as the sole detection of an agent does not necessarily indicate that it is the cause of the problem.


Sign in / Sign up

Export Citation Format

Share Document