scholarly journals Characterization of siamycin I, a human immunodeficiency virus fusion inhibitor.

1996 ◽  
Vol 40 (1) ◽  
pp. 133-138 ◽  
Author(s):  
P F Lin ◽  
H Samanta ◽  
C M Bechtold ◽  
C A Deminie ◽  
A K Patick ◽  
...  

The human immunodeficiency virus (HIV) fusion inhibitor siamycin I, a 21-residue tricyclic peptide, was identified from a Streptomyces culture by using a cell fusion assay involving cocultivation of HeLa-CD4+ cells and monkey kidney (BSC-1) cells expressing the HIV envelope gp160. Siamycin I is effective against acute HIV type 1 (HIV-1) and HIV-2 infections, with 50% effective doses ranging from 0.05 to 5.7 microM, and the concentration resulting in a 50% decrease in cell viability in the absence of viral infection is 150 microM in CEM-SS cells. Siamycin I inhibits fusion between C8166 cells and CEM-SS cells chronically infected with HIV (50% effective dose of 0.08 microM) but has no effect on Sendai virus-induced fusion or murine myoblast fusion. Siamycin I does not inhibit gp120 binding to CD4 in either gp120- or CD4-based capture enzyme-linked immunosorbent assays. Inhibition of HIV-induced fusion by this compound is reversible, suggesting that siamycin I binds noncovalently. An HIV-1 resistant variant was selected by in vitro passage of virus in the presence of increasing concentrations of siamycin I. Drug susceptibility studies on a chimeric virus containing the envelope gene from the siamycin I-resistant variant indicate that resistance maps to the gp160 gene. Envelope-deficient HIV complemented with gp160 from siamycin I-resistant HIV also displayed a resistant phenotype upon infection of HeLa-CD4-LTR-beta-gal cells. A comparison of the DNA sequences of the envelope genes from the resistant and parent viruses revealed a total of six amino acid changes. Together these results indicate that siamycin I interacts with the HIV envelope protein.

2005 ◽  
Vol 79 (19) ◽  
pp. 12447-12454 ◽  
Author(s):  
M. Mink ◽  
S. M. Mosier ◽  
S. Janumpalli ◽  
D. Davison ◽  
L. Jin ◽  
...  

ABSTRACT Enfuvirtide (ENF), a novel human immunodeficiency virus type 1 (HIV-1) fusion inhibitor, has potent antiviral activity against HIV-1 both in vitro and in vivo. Resistance to ENF observed after in vitro passaging was associated with changes in a three-amino-acid (aa) motif, GIV, at positions 36 to 38 of gp41. Patients with ongoing viral replication while receiving ENF during clinical trials acquired substitutions within gp41 aa 36 to 45 in the first heptad repeat (HR-1) of gp41 in both population-based plasma virus sequences and proviral DNA sequences from isolates showing reduced susceptibilities to ENF. To investigate their impact on ENF susceptibility, substitutions were introduced into a modified pNL4-3 strain by site-directed mutagenesis, and the susceptibilities of mutant viruses and patient-derived isolates to ENF were tested. In general, susceptibility decreases for single substitutions were lower than those for double substitutions, and the levels of ENF resistance seen for clinical isolates were higher than those observed for the site-directed mutant viruses. The mechanism of ENF resistance was explored for a subset of the substitutions by expressing them in the context of a maltose binding protein chimera containing a portion of the gp41 ectodomain and measuring their binding affinity to fluorescein-labeled ENF. Changes in binding affinity for the mutant gp41 fusion proteins correlated with the ENF susceptibilities of viruses containing the same substitutions. The combined results support the key role of gp41 aa 36 to 45 in the development of resistance to ENF and illustrate that additional envelope regions contribute to the ENF susceptibility of fusion inhibitor-naïve viruses and resistance to ENF.


1998 ◽  
Vol 42 (2) ◽  
pp. 478-480 ◽  
Author(s):  
Simon P. Tucker ◽  
Thomas R. Stiebel ◽  
Karen E. Potts ◽  
Mary L. Smidt ◽  
Martin L. Bryant

ABSTRACT The frequency of drug-resistant human immunodeficiency virus type 1 (HIV-1) variants in virus populations not previously exposed to drug was determined in vitro by using HIV-1RF and the protease inhibitor SC-55389A. Two variants with single mutations responsible for drug resistance (V82A and N88S) were quantifiably isolated after only one round of replication, yielding a crude frequency estimate of at least 1 SC-55389A-resistant variant per 3.5 × 105wild-type infectious units.


1999 ◽  
Vol 73 (7) ◽  
pp. 5741-5747 ◽  
Author(s):  
Tiffany E. Hamm ◽  
David Rekosh ◽  
Marie-Louise Hammarskjöld

ABSTRACT Intracellular immunization with RevM10, a transdominant negative form of the Rev protein, efficiently inhibits human immunodeficiency virus (HIV) replication in vitro and gene therapy protocols that use this modality are currently being evaluated in human clinical trials. Development of resistance to this kind of therapy has not been previously reported. Here we show that RevM10-resistant HIV type 1 (HIV-1) variants can be selected by in vitro passage of HIV-1 in a T-lymphoblastoid cell line constitutively expressing RevM10. Unexpectedly, the selected variants showed changes in the Rev response element (RRE) but no changes in Rev. Replacement of the wild-type RRE with a mutated RRE resulted in a virus that showed increased resistance to RevM10. After repeated passages of the resistant variant in cells expressing RevM10, a virus with an additional mutation in the viralvpu gene was selected. Surprisingly, a virus containing only this vpu mutation also showed some resistance to inhibition by RevM10.


2007 ◽  
Vol 81 (22) ◽  
pp. 12535-12542 ◽  
Author(s):  
Scott A. Brown ◽  
Julia L. Hurwitz ◽  
Amy Zirkel ◽  
Sherri Surman ◽  
Toru Takimoto ◽  
...  

ABSTRACT The importance of antigen-specific CD4+ helper T cells in virus infections is well recognized, but their possible role as direct mediators of virus clearance is less well characterized. Here we describe a recombinant Sendai virus strategy for probing the effector role(s) of CD4+ T cells. Mice were vaccinated with DNA and vaccinia virus recombinant vectors encoding a secreted human immunodeficiency virus type 1 (HIV-1) envelope protein and then challenged with a Sendai virus carrying a homologous HIV-1 envelope gene. The primed mice showed (i) prompt homing of numerous envelope-primed CD4+ T cell populations to the virus-infected lung, (ii) substantial production of gamma interferon, and interleukin-2 (IL-2), IL-4, and IL-5 in that site, and (iii) significantly reduced pulmonary viral load. The challenge experiments were repeated with immunoglobulin−/− μMT mice in the presence or absence of CD8+ and/or CD4+ T cells. These selectively immunodeficient mice were protected by primed CD4+ T cells in the absence of antibody or CD8+ T cells. Together, these results highlight the role of CD4+ T cells as direct effectors in vivo and, because this protocol gives such a potent response, identify an outstanding experimental model for further dissecting CD4+ T-cell-mediated immunity in the lung.


Author(s):  
M.A. Tyumentseva ◽  
◽  
A.I. Tyumentsev ◽  
V.G. Akimkin ◽  
◽  
...  

For the effective functioning of supervisory and health monitoring services, it is necessary to introduce modern molecular technologies into their practice. Therefore, the task of developing new effective methods for detecting pathogen, for example HIV, based on CRISPR/CAS genome editing systems, remains urgent. In the present work, guide RNAs and specific oligonucleotides were developed for preliminary amplification of highly conserved regions of the HIV-1 genome. The developed guide RNAs make it possible to detect single copies of HIV-1 proviral DNA in vitro as part of CRISPR/CAS ribonucleoprotein complexes in biological samples after preliminary amplification.


1997 ◽  
Vol 41 (5) ◽  
pp. 1082-1093 ◽  
Author(s):  
S M Daluge ◽  
S S Good ◽  
M B Faletto ◽  
W H Miller ◽  
M H St Clair ◽  
...  

1592U89, (-)-(1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclo pentene-1-methanol, is a carbocyclic nucleoside with a unique biological profile giving potent, selective anti-human immunodeficiency virus (HIV) activity. 1592U89 was selected after evaluation of a wide variety of analogs containing a cyclopentene substitution for the 2'-deoxyriboside of natural deoxynucleosides, optimizing in vitro anti-HIV potency, oral bioavailability, and central nervous system (CNS) penetration. 1592U89 was equivalent in potency to 3'-azido-3'-deoxythymidine (AZT) in human peripheral blood lymphocyte (PBL) cultures against clinical isolates of HIV type 1 (HIV-1) from antiretroviral drug-naive patients (average 50% inhibitory concentration [IC50], 0.26 microM for 1592U89 and 0.23 microM for AZT). 1592U89 showed minimal cross-resistance (approximately twofold) with AZT and other approved HIV reverse transcriptase (RT) inhibitors. 1592U89 was synergistic in combination with AZT, the nonnucleoside RT inhibitor nevirapine, and the protease inhibitor 141W94 in MT4 cells against HIV-1 (IIIB). 1592U89 was anabolized intracellularly to its 5'-monophosphate in CD4+ CEM cells and in PBLs, but the di- and triphosphates of 1592U89 were not detected. The only triphosphate found in cells incubated with 1592U89 was that of the guanine analog (-)-carbovir (CBV). However, the in vivo pharmacokinetic, distribution, and toxicological profiles of 1592U89 were distinct from and improved over those of CBV, probably because CBV itself was not appreciably formed from 1592U89 in cells or animals (<2%). The 5'-triphosphate of CBV was a potent, selective inhibitor of HIV-1 RT, with Ki values for DNA polymerases (alpha, beta, gamma, and epsilon which were 90-, 2,900-, 1,200-, and 1,900-fold greater, respectively, than for RT (Ki, 21 nM). 1592U89 was relatively nontoxic to human bone marrow progenitors erythroid burst-forming unit and granulocyte-macrophage CFU (IC50s, 110 microM) and human leukemic and liver tumor cell lines. 1592U89 had excellent oral bioavailability (105% in the rat) and penetrated the CNS (rat brain and monkey cerebrospinal fluid) as well as AZT. Having demonstrated an excellent preclinical profile, 1592U89 has progressed to clinical evaluation in HIV-infected patients.


2002 ◽  
Vol 76 (3) ◽  
pp. 1015-1024 ◽  
Author(s):  
Barbara Müller ◽  
Tilo Patschinsky ◽  
Hans-Georg Kräusslich

ABSTRACT The Gag-derived protein p6 of human immunodeficiency virus type 1 (HIV-1) plays a crucial role in the release of virions from the membranes of infected cells. It is presumed that p6 and functionally related proteins from other viruses act as adapters, recruiting cellular factors to the budding site. This interaction is mediated by so-called late domains within the viral proteins. Previous studies had suggested that virus release from the plasma membrane shares elements with the cellular endocytosis machinery. Since protein phosphorylation is known to be a regulatory mechanism in these processes, we have investigated the phosphorylation of HIV-1 structural proteins. Here we show that p6 is the major phosphoprotein of HIV-1 particles. After metabolic labeling of infected cells with [ortho- 32P]phosphate, we found that phosphorylated p6 from infected cells and from virus particles consisted of several forms, suggesting differential phosphorylation at multiple sites. Apparently, phosphorylation occurred shortly before or after the release of p6 from Gag and involved only a minor fraction of the total virion-associated p6 molecules. Phosphoamino acid analysis indicated phosphorylation at Ser and Thr, as well as a trace of Tyr phosphorylation, supporting the conclusion that multiple phosphorylation events do occur. In vitro experiments using purified virus revealed that endogenous or exogenously added p6 was efficiently phosphorylated by virion-associated cellular kinase(s). Inhibition experiments suggested that a cyclin-dependent kinase or a related kinase, most likely ERK2, was involved in p6 phosphorylation by virion-associated enzymes.


2008 ◽  
Vol 52 (6) ◽  
pp. 2111-2119 ◽  
Author(s):  
Hirotomo Nakata ◽  
Seth M. Steinberg ◽  
Yasuhiro Koh ◽  
Kenji Maeda ◽  
Yoshikazu Takaoka ◽  
...  

ABSTRACT Aplaviroc (AVC), an experimental CCR5 inhibitor, potently blocks in vitro the infection of R5-tropic human immunodeficiency virus type 1 (R5-HIV-1) at subnanomolar 50% inhibitory concentrations. Although maraviroc is presently clinically available, further studies are required to determine the role of CCR5 inhibitors in combinations with other drugs. Here we determined anti-HIV-1 activity using combinations of AVC with various anti-HIV-1 agents, including four U.S. Food and Drug Administration-approved drugs, two CCR5 inhibitors (TAK779 and SCH-C) and two CXCR4 inhibitors (AMD3100 and TE14011). Combination effects were defined as synergistic or antagonistic when the activity of drug A combined with B was statistically greater or less, respectively, than the additive effects of drugs A and A combined and drugs B and B combined by using the Combo method, described in this paper, which provides (i) a flexible choice of interaction models and (ii) the use of nonparametric statistical methods. Synergistic effects against R5-HIV-1Ba-L and a 50:50 mixture of R5-HIV-1Ba-L and X4-HIV-1ERS104pre (HIV-1Ba-L/104pre) were seen when AVC was combined with zidovudine, nevirapine, indinavir, or enfuvirtide. Mild synergism and additivity were observed when AVC was combined with TAK779 and SCH-C, respectively. We also observed more potent synergism against HIV-1Ba-L/104pre when AVC was combined with AMD3100 or TE14011. The data demonstrate a tendency toward greater synergism with AVC plus either of the two CXCR4 inhibitors compared to the synergism obtained with combinations of AVC and other drugs, suggesting that the development of effective CXCR4 inhibitors may be important for increasing the efficacies of CCR5 inhibitors.


Sign in / Sign up

Export Citation Format

Share Document