scholarly journals Increasing antibiotic resistance in clinical isolates of Aeromonas strains in Taiwan.

1996 ◽  
Vol 40 (5) ◽  
pp. 1260-1262 ◽  
Author(s):  
W C Ko ◽  
K W Yu ◽  
C Y Liu ◽  
C T Huang ◽  
H S Leu ◽  
...  

A total of 234 clinical isolates of Aeromonas, primarily A. hydrophila, were collected for the present study. Most were isolates from blood. By the agar dilution method, more than 90% of the Aeromonas strains were found to be susceptible to moxalactam, ceftazidime, cefepime, aztreonam, imipenem, amikacin, and fluoroquinolones, but they were more resistant to tetracycline, trimethoprim-sulfamethoxazole, some extended-spectrum cephalosporins, and aminoglycosides than strains from the United States and Australia.

2019 ◽  
Vol 63 (3) ◽  
Author(s):  
Marissa A. Valentine-King ◽  
Katherine Cisneros ◽  
Margaret O. James ◽  
Robert W. Huigens ◽  
Mary B. Brown

ABSTRACT Escalating levels of antibiotic resistance in mycoplasmas, particularly macrolide resistance in Mycoplasma pneumoniae and M. genitalium, have narrowed our antibiotic arsenal. Further, mycoplasmas lack a cell wall and do not synthesize folic acid, rendering common antibiotics, such as beta-lactams, vancomycin, sulfonamides, and trimethoprim, of no value. To address this shortage, we screened nitroxoline, triclosan, and a library of 20 novel, halogenated phenazine, quinoline, and NH125 analogues against Ureaplasma species and M. hominis clinical isolates from urine. We tested a subset of these compounds (n = 9) against four mycoplasma type strains (M. pneumoniae, M. genitalium, M. hominis, and Ureaplasma urealyticum) using a validated broth microdilution or agar dilution method. Among 72 Ureaplasma species clinical isolates, nitroxoline proved most effective (MIC90, 6.25 µM), followed by an N-arylated NH125 analogue (MIC90, 12.5 µM). NH125 and its analogue had significantly higher MICs against U. urealyticum isolates than against U. parvum isolates, whereas nitroxoline did not. Nitroxoline exhibited bactericidal activity against U. parvum isolates but bacteriostatic activity against the majority of U. urealyticum isolates. Among the type strains, the compounds had the greatest activity against M. pneumoniae and M. genitalium, with 8 (80%) and 5 (71.4%) isolates demonstrating MICs of ≤12.5 µM, respectively. Triclosan also exhibited lower MICs against M. pneumoniae and M. genitalium. Overall, we identified a promising range of quinoline, halogenated phenazine, and NH125 compounds that showed effectiveness against M. pneumoniae and M. genitalium and found that nitroxoline, approved for use outside the United States for the treatment of urinary tract infections, and an N-arylated NH125 analogue demonstrated low MICs against Ureaplasma species isolates.


2007 ◽  
Vol 51 (8) ◽  
pp. 2716-2719 ◽  
Author(s):  
David W. Hecht ◽  
Minerva A. Galang ◽  
Susan P. Sambol ◽  
James R. Osmolski ◽  
Stuart Johnson ◽  
...  

ABSTRACT The incidence and severity of Clostridium difficile-associated disease (CDAD) is increasing, and standard treatment is not always effective. Therefore, more-effective antimicrobial agents and treatment strategies are needed. We used the agar dilution method to determine the in vitro susceptibility of the following antimicrobials against 110 toxigenic clinical isolates of C. difficile from 1983 to 2004, primarily from the United States: doripenem, meropenem, gatifloxacin, levofloxacin, moxifloxacin, OPT-80, ramoplanin, rifalazil, rifaximin, nitazoxanide, tizoxanide, tigecycline, vancomycin, tinidazole, and metronidazole. Included among the isolates tested were six strains of the toxinotype III, NAP1/BI/027 group implicated in recent U.S., Canadian, and European outbreaks. The most active agents in vitro were rifaximin, rifalazil, tizoxanide, nitazoxanide, and OPT-80 with MICs at which 50% of the isolates are inhibited (MIC50) and MIC90 values of 0.0075 and 0.015 μg/ml, 0.0075 and 0.03 μg/ml, 0.06 and 0.125 μg/ml, 0.06 and 0.125 μg/ml, 0.125 and 0.125 μg/ml, respectively. However, for three isolates the rifalazil and rifaximin MICs were very high (MIC of >256 μg/ml). Ramoplanin, vancomycin, doripenem, and meropenem were also very active in vitro with narrow MIC50 and MIC90 ranges. None of the isolates were resistant to metronidazole, the only agent for which there are breakpoints, with tinidazole showing nearly identical results. These in vitro susceptibility results are encouraging and support continued evaluation of selected antimicrobials in clinical trials of treatment for CDAD.


2004 ◽  
Vol 67 (3) ◽  
pp. 448-455 ◽  
Author(s):  
C. LARKIN ◽  
C. POPPE ◽  
B. MCNAB ◽  
B. MCEWEN ◽  
A. MAHDI ◽  
...  

The emergence of antimicrobial-resistant Salmonella organisms, especially Salmonella Typhimurium DT104, has been reported in many countries, including the United States and Canada. The purposes of this study were to determine the antimicrobial resistance patterns of Salmonella isolated from hog, beef, and chicken carcasses from provincially inspected abattoirs in Ontario and to determine the agreement between the agar dilution method and the microbroth dilution method for measurement of antimicrobial resistance of the isolates. Antimicrobial resistance of Salmonella isolates from hogs (n = 71), beef (n = 24), and chicken (n = 295) to amikacin, ampicillin, cephalothin, chloramphenicol, ciprofloxacin, gentamicin, streptomycin, sulfamethoxazole,and tetracycline was determined using the two methods. None of the 390 isolates were resistant to ciprofloxacin at levels of 0.125 μg/ml. All chicken and hog isolates were sensitive to amikacin, whereas all beef isolates were sensitive to both amikacin and gentamicin. Multiple antimicrobial resistance (resistance to more than one antimicrobial) was found in 29% of bovine isolates and 42% of porcine isolates using both methods for testing and in 42% by the agar dilution and 33% by the microbroth dilution methods in the chicken isolates. Overall, there was good agreement between the two test methods for resistance to most of the antimicrobials, with disagreement found in the results in 1.3% of the isolates for ampicillin and sulfamethoxazole, 8.2% for streptomycin, 5.6% for cephalothin, and 1.0% of the isolates for tetracycline. The lack of agreement between the two test methods was found mostly among the chicken isolates.


2002 ◽  
Vol 46 (9) ◽  
pp. 3068-3070 ◽  
Author(s):  
Ellie J. C. Goldstein ◽  
Diane M. Citron ◽  
C. Vreni Merriam ◽  
Yumi A. Warren ◽  
Kerin L. Tyrrell ◽  
...  

ABSTRACT The in vitro susceptibilities of 170 clinical isolates plus 12 American Type Culture Collection strains of Pasteurella species comprising nine species and three Pasteurella multocida subspecies were studied by an agar dilution method. Garenoxacin (BMS-284756), a new des-fluoro(6) quinolone, was active at ≤0.06 μg/ml against all isolates, including four β-lactamase-producing strains, with >90% of the strains susceptible to ≤0.008 μg/ml. Garenoxacin was generally 1 to 2 dilutions more active than levofloxacin and moxifloxacin and was the most active agent tested. Cefoxitin required 1 μg/ml for inhibition of 51 of 182 (29%) of strains, and 3 strains (also β-lactamase producers) were resistant to doxycycline.


2019 ◽  
Vol 6 (7) ◽  
Author(s):  
Ayesha Khan ◽  
Truc T Tran ◽  
Rafael Rios ◽  
Blake Hanson ◽  
William C Shropshire ◽  
...  

Abstract Background Treatment of serious infections due to multidrug-resistant (MDR) Pseudomonas aeruginosa remains a challenge, despite the introduction of novel therapeutics. In this study, we report 2 extensively drug-resistant clinical isolates of sequence type (ST) 309 P aeruginosa resistant to all β-lactams, including the novel combinations ceftolozane/tazobactam, ceftazidime/avibactam, and meropenem/vaborbactam. Methods Isolates were sequenced using both short-read (Illumina) and long-read technology to identify resistance determinants, polymorphisms (compared with P aeruginosa PAO1), and reconstruct a phylogenetic tree. A pair of β-lactamases, Guiana extended spectrum β-lactamase (GES)-19 and GES-26, were cloned and expressed in a laboratory strain of Escherichia coli to examine their relative impact on resistance. Using cell lysates from E coli expressing the GES genes individually and in tandem, we determined relative rates of hydrolysis for nitrocefin and ceftazidime. Results Two ST309 P aeruginosa clinical isolates were found to harbor the extended spectrum β-lactamases GES-19 and GES-26 clustered in tandem on a chromosomal class 1 integron. The presence of both enzymes in E coli was associated with significantly elevated minimum inhibitory concentrations to aztreonam, cefepime, meropenem, ceftazidime/avibactam, and ceftolozane/tazobactam, compared with those expressed individually. The combination of ceftazidime/avibactam plus aztreonam was active in vitro and used to achieve cure in one patient. Phylogenetic analysis revealed ST309 P aeruginosa are closely related to MDR strains from Mexico also carrying tandem GES. Conclusions The presence of tandem GES-19 and GES-26 is associated with resistance to all β-lactams, including ceftolozane/tazobactam. Phylogenetic analysis suggests that ST309 P aeruginosa may be an emerging threat in the United States.


1996 ◽  
Vol 40 (6) ◽  
pp. 1419-1421 ◽  
Author(s):  
S J Martin ◽  
S L Pendland ◽  
C Chen ◽  
P Schreckenberger ◽  
L H Danziger

Combination antimicrobial therapy against Legionella species has not been well studied. Several quinolones have activity against Legionella strains, which prompted this in vitro search for a synergistic combination with the macrolides. By a checkerboard assay, erythromycin, clarithromycin, and azithromycin, each in combination with ciprofloxacin and levofloxacin, were tested for synergy against 46 isolates of Legionella. The agar dilution method was employed using buffered charcoal-yeast extract media. A final inoculum of 10(4) CFU per spot was prepared from 24-h growth of each isolate. Plates were incubated at 35 degrees C for 48 h. Synergy, partial synergy, additive effect, or indifference was observed for all combinations of antibiotics tested. There was no antagonism observed. Synergy occurred to a significantly greater extent for the clarithromycin-levofloxacin (P = 0.0001) and azithromycin-levofloxacin (P = 0.003) combinations versus erythromycin-levofloxacin. The azithromycin-ciprofloxacin combination demonstrated significantly greater synergy than did either erythromycin-ciprofloxacin (P = 0.003) or clarithromycin-ciprofloxacin (P = 0.001). The newer macrolides clarithromycin and azithromycin may be more active in combination with a fluoroquinolone than is erythromycin.


2002 ◽  
Vol 46 (12) ◽  
pp. 3995-3996 ◽  
Author(s):  
Ellie J. C. Goldstein ◽  
Diane M. Citron ◽  
C. Vreni Merriam ◽  
Yumi A. Warren ◽  
Kerin L. Tyrrell ◽  
...  

ABSTRACT Garenoxacin (BMS 284756) was active against 105 of 108 (97%) recent clinical Gardnerella vaginalis isolates at ≤2 μg/ml by using the reference agar dilution method for anaerobes. Twenty-eight percent of isolates (31 of 108) were resistant to metronidazole, and 44% were resistant to doxycycline. All were susceptible to clindamycin and ampicillin-sulbactam.


2019 ◽  
Vol 13 (1) ◽  
pp. 1-5 ◽  
Author(s):  
Fakhri Haghi ◽  
Neda Shirmohammadlou ◽  
Rabab Bagheri ◽  
Sama Jamali ◽  
Habib Zeighami

Objectives:Enterococci are part of the microbial flora of the gastrointestinal tract of animals and human and can be released into the environment through fecal materials. These microorganisms play an important role in the dissemination of antibiotic resistance genes. Vancomycin-Resistant Enterococci (VRE) have been obtained in municipal sewage, hospital and agricultural wastes and healthy carriers. The aim of this study was to investigate the frequency of VRE in sewage and fecal samples of healthy carriers.Methods:This study was performed on fecal specimens of 100 healthy carriers and 100 samples of sewage in Zanjan Province. Fecal and sewage samples were cultured on Trypticase Soy Agar and biochemical tests were performed for Enterococci identification. Antimicrobial susceptibility testing was performed as CLSI guidelines and vancomycin resistance was determined using the agar dilution method.Result:Of 200 cultured samples, 141 isolates of Enterococci were detected. 64 isolates were detected from fecal and 77 were isolated from the sewage samples. Antibiotic resistance profile of fecal isolates was as follows: tetracycline (57.8%), ciprofloxacin (54.7%), phosphomycin (54.7%), erythromycin (51.5%), chloramphenicol (12.5%), amoxicillin (21.8%) and gatifloxacin (23.5%). Also for the sewage samples, the most antibiotic resistance was detected against ciprofloxacin (76.6%) followed by tetracycline (74%), erythromycin (68.8%), phosphomycin (61%). According to Agar dilution method, among 141 isolates of Enterococci, 15 (10.6%) isolates were vancomycin resistant: 11 of sewage isolates (14.3%) and 4 of the carrier isolates (6.2%).Conclusion:Our study describes the high frequency of VRE in municipal sewage and healthy carriers. Regarding the importance of VRE strains in the clinical and environment, it seems necessary to follow up on the issue.


2019 ◽  
Vol 57 (12) ◽  
Author(s):  
Gary N. McAuliffe ◽  
Marian Smith ◽  
Gavin Cooper ◽  
Rose F. Forster ◽  
Sally A. Roberts

ABSTRACT Azithromycin is a component of empirical treatment regimens for Neisseria gonorrhoeae infections, but antimicrobial susceptibility testing for this agent is technically challenging. We compared the intertest variability, MIC values, and CLSI/EUCAST categorization of clinical and reference isolates of N. gonorrhoeae treated with azithromycin by testing 107 clinical isolates and nine reference isolates by agar dilution and in duplicates using MIC test strips (Liofilchem, Italy) and Etests (bioMérieux, France). Replicate isolate agreement within 1 log2 between duplicate tests was 87% for MIC test strips and 100% for Etests (P < 0.001). Essential agreement with the agar dilution method was higher for Etests (91%) than for MIC test strips (44%, P < 0.001). The geometric mean MIC was highest for MIC test strips (0.8 mg/liter) and significantly higher than both Etest (0.47 mg/liter, P < 0.001) and agar dilution (0.26 mg/liter, P < 0.001) methods. Etest MICs were higher than those obtained with agar dilution (P < 0.001). Agar dilution, MIC test strip, and Etest methods categorized 96%, 85%, and 95% (P = 0.003) of clinical isolates, respectively, as susceptible/wild type according to CLSI/EUCAST criteria. Our results illustrate the difficulties underlying azithromycin susceptibility testing for N. gonorrhoeae and demonstrate that results can vary using different methods. This variability could influence antimicrobial resistance reporting between laboratories involved in N. gonorrhoeae surveillance programs.


Sign in / Sign up

Export Citation Format

Share Document