scholarly journals Reappraisal of the antimicrobial susceptibilities of Chryseobacterium and Flavobacterium species and methods for reliable susceptibility testing.

1997 ◽  
Vol 41 (12) ◽  
pp. 2738-2741 ◽  
Author(s):  
S L Fraser ◽  
J H Jorgensen

Several Flavobacterium species, comprising a heterogeneous group of gram-negative bacilli that are capable of causing opportunistic infections in humans, have recently been reclassified as Chryseobacterium or Myroides species. Intrinsically resistant to a number of antibiotics, these organisms have been reported to be susceptible to vancomycin and certain other drugs that are normally active against gram-positive bacteria. By using the National Committee for Clinical Laboratory Standards (NCCLS) broth microdilution procedure, 58 clinical isolates of former flavobacteria (36 Chryseobacterium meningosepticum isolates, 11 C. indologenes isolates, 3 C. gleum isolates, 4 unspeciated former members of Flavobacterium group IIb, and 4 Myroides odoratum isolates) were tested with 23 antibiotics, including conventional and investigational agents. In addition, the broth microdilution results were compared to those generated by agar dilution, E-test, and disk diffusion for vancomycin and piperacillin-tazobactam. Compared to the NCCLS microdilution results, there were 7.1 and 17.9% very major errors with piperacillin-tazobactam by agar dilution and E-test, respectively. In addition, there were from 12.1 to 48.3% minor errors with both procedures with vancomycin and piperacillin-tazobactam. The very major and minor error rates were unacceptably high with disk testing of piperacillin-tazobactam; the use of enterococcal vancomycin disk breakpoints (zone diameter of > or =17 mm = susceptible) resulted in >20% minor errors but only one very major error. All of the isolates were susceptible to minocycline; over 90% were susceptible to sparfloxacin, levofloxacin, and clinafloxacin; and 88% were susceptible to rifampin. None was susceptible to vancomycin. When Chryseobacterium or Myroides species are isolated from serious infections, susceptibility testing by broth microdilution should be performed and therapy should be guided by those results.

2004 ◽  
Vol 70 (4) ◽  
pp. 2398-2403 ◽  
Author(s):  
Mokhlasur Rahman ◽  
Inger Kühn ◽  
Motiur Rahman ◽  
Barbro Olsson-Liljequist ◽  
Roland Möllby

ABSTRACT We describe the ScanMIC method, a colorimetric MIC method for susceptibility testing of gram-negative fermentative bacteria. The method is a slight modification of the National Committee for Clinical Laboratory Standards (NCCLS) recommended broth microdilution method that uses a redox indicator 2,3,5-triphenyltetrazolium chloride (TTC) to enhance the estimate of bacterial growth inhibition in a microplate and a flatbed scanner to capture the microplate image. In-house software was developed to transform the microplate image into numerical values based on the amount of bacterial growth and to generate the MICs automatically. The choice of indicator was based on its low toxicity and ease of reading by scanner. We compared the ScanMIC method to the NCCLS recommended broth microdilution method with 197 coliform strains against seven antibacterial agents. The interpretative categorical agreement was obtained in 92.4% of the assays, and the agreement for MIC differences (within ±1 log2 dilution) was obtained in 96% for ScanMIC versus broth microdilution and 97% for a two-step incubation colorimetric broth microdilution versus the broth microdilution method. The method was found to be labor-saving, not to require any initial investment, and to show reliable results. Thus, the ScanMIC method could be useful for epidemiological surveys that include susceptibility testing of bacteria.


2006 ◽  
Vol 50 (4) ◽  
pp. 1287-1292 ◽  
Author(s):  
Benjamin J. Park ◽  
Beth A. Arthington-Skaggs ◽  
Rana A. Hajjeh ◽  
Naureen Iqbal ◽  
Meral A. Ciblak ◽  
...  

ABSTRACT One hundred seven Candida bloodstream isolates (51 C. albicans, 24 C. glabrata, 13 C. parapsilosis, 13 C. tropicalis, 2 C. dubliniensis, 2 C. krusei, and 2 C. lusitaniae strains) from patients treated with amphotericin B alone underwent in vitro susceptibility testing against amphotericin B using five different methods. Fifty-four isolates were from patients who failed treatment, defined as death 7 to 14 days after the incident candidemia episode, having persistent fever of ≥5 days' duration after the date of the incident candidemia, or the recurrence of fever after two consecutive afebrile days while on antifungal treatment. MICs were determined by using the Clinical Laboratory Standards Institute (formally National Committee for Clinical Laboratory Standards) broth microdilution procedure with two media and by using Etest. Minimum fungicidal concentrations (MFCs) were also measured in two media. Broth microdilution tests with RPMI 1640 medium generated a restricted range of MICs (0.125 to 1 μg/ml); the corresponding MFC values ranged from 0.5 to 4 μg/ml. Broth microdilution tests with antibiotic medium 3 produced a broader distribution of MIC and MFC results (0.015 to 0.25 μg/ml and 0.06 to 2 μg/ml, respectively). Etest produced the widest distribution of MICs (0.094 to 2 μg/ml). However, none of the test formats studied generated results that significantly correlated with therapeutic success or failure.


1998 ◽  
Vol 36 (1) ◽  
pp. 153-156 ◽  
Author(s):  
Sanjay G. Revankar ◽  
William R. Kirkpatrick ◽  
Robert K. McAtee ◽  
Annette W. Fothergill ◽  
Spencer W. Redding ◽  
...  

Trailing endpoints remain a problem in antifungal susceptibility testing using the National Committee for Clinical Laboratory Standards (NCCLS) method. For isolates for which trailing endpoints are found, MICs of ≤1 μg/ml at 24 h and of >64 μg/ml at 48 h are usually observed. In a study of human immunodeficiency virus (HIV)-infected patients with oropharyngeal candidiasis, we identified three patients with multiple serial isolates for which trailing endpoints were observed with fluconazole. At 24 h, MICs were generally ≤1 μg/ml by both broth macro- and microdilution methods. However, at 48 h, MICs were >64 μg/ml, while the organism remained susceptible by agar dilution testing with fluconazole. Most episodes of oropharyngeal candidiasis with trailing-endpoint isolates responded to doses of fluconazole as low as 100 mg/day. Two patients had both susceptible and trailing-endpoint isolates by NCCLS broth macro- and microdilution testing; these isolates were found to be the same strain by pulsed-field gel electrophoresis using restriction fragment length polymorphisms. Another patient had two different strains, one for which trailing endpoints were observed and one which was susceptible at 48 h. Trailing endpoints may be seen with selected isolates of a strain or may be a characteristic finding for most or all isolates of a strain. In addition, with isolates for which trailing endpoints are observed, reading the endpoint for the NCCLS method at 24 h may be more appropriate.


Author(s):  
Michelle M. Bellerose ◽  
Andrew E. Clark ◽  
Jung-Ho Youn ◽  
Rebecca A. Weingarten ◽  
Chelsea M. Crooks ◽  
...  

Accurate and reproducible antimicrobial susceptibility testing (AST) of polymyxin antibiotics is critical, as these drugs are last-line therapeutic options for the treatment of multidrug-resistant Gram-negative bacterial infections. However, polymyxin AST in the routine laboratory remains challenging. In this study, we evaluated the performance of an automated broth microdilution (BMD) system (Sensititre™, ThermoFisher) compared to agar dilution (AD) for colistin and polymyxin B AST of 129 Enterobacterales, Pseudomonas aeruginosa and Acinetobacter baumannii complex clinical isolates. Minimal inhibitory concentrations (MICs) derived from the Sensititre™ instrument based on two operator comparisons demonstrated overall categorical agreement (CA) of 86% and 89% compared to AD for colistin and 89% and 92% compared to AD for polymyxin B. However, error rates were higher than recommended by CLSI. Manual inspection of microdilution wells revealed microbial growth and skip wells which were erroneously interpreted by the Aris™2X instrument. Using manually interpreted BMD MICs read by two operators increased the overall categorical agreements to 88% and 95% compared to AD for colistin and 92% and 96% compared to AD for polymyxin B. Laboratories choosing to use the Sensititre™ platform for polymyxin AST should consider manual evaluation of wells as part of their algorithm.


1998 ◽  
Vol 36 (3) ◽  
pp. 788-791 ◽  
Author(s):  
J. H. Jorgensen ◽  
M. L. McElmeel ◽  
S. A. Crawford

The MicroScan MICroSTREP panel is a recently marketed frozen broth microdilution panel for susceptibility testing of various streptococci, including Streptococcus pneumoniae. The panel contains 10 antimicrobial agents in cation-adjusted Mueller-Hinton broth supplemented with 3% lysed horse blood, similar in concept to the National Committee for Clinical Laboratory Standards (NCCLS) reference broth microdilution method for testing streptococci. A group of 210 isolates of S. pneumoniae were selected to include isolates with previously documented resistance to agents incorporated in the MICroSTREP panel, as well as recent invasive clinical isolates. All isolates were tested simultaneously with the MICroSTREP panel and an NCCLS reference panel whose drug concentrations were prepared to coincide with those of the MICroSTREP panel. Of the 210 isolates, 5 failed to grow in the MICroSTREP panel; 3 of those also did not grow in the reference panel. Essential agreement of MICs determined by the two methods (test MIC ± one dilution of the reference MIC) was 99.6% overall and ranged from 98.0% with chloramphenicol to 100% with penicillin, ceftriaxone, erythromycin, tetracycline, and vancomycin. There were no very major or major interpretive category errors resulting from the MICroSTREP panel tests. Minor interpretive category errors ranged from 12.2% with cefotaxime and 9.8% with ceftriaxone (due mainly to clustering of MICs for the selected strains near the breakpoints) to 0% with chloramphenicol and vancomycin. These results indicate that the MicroScan MICroSTREP frozen panels provide susceptibility results with pneumococci that are essentially equivalent to results derived by the NCCLS reference broth microdilution procedure.


2000 ◽  
Vol 38 (1) ◽  
pp. 453-455
Author(s):  
Brant A. Odland ◽  
Meredith E. Erwin ◽  
Ronald N. Jones

ABSTRACT This multicenter study proposes antimicrobial susceptibility (MIC and disk diffusion methods) quality control (QC) parameters for seven compounds utilized in veterinary health. Alexomycin, apramycin, tiamulin, tilmicosin, and tylosin were tested by broth microdilution against various National Committee for Clinical Laboratory Standards (NCCLS)-recommended QC organisms ( Staphylococcus aureus ATCC 29213, Enterococcus faecalis ATCC 29212, Streptococcus pneumoniae ATCC 49619, Escherichia coli ATCC 25922, and Pseudomonas aeruginosa ATCC 27853). In addition, disk diffusion zone diameter QC limits were determined for apramycin, enrofloxacin, and premafloxacin by using E. coli ATCC 25922, P. aeruginosa ATCC 27853, and S. aureus ATCC 25923. The results from five or six participating laboratories produced ≥99.0% of MICs and ≥95.0% of the zone diameters within suggested guidelines. The NCCLS Subcommittee for Veterinary Antimicrobial Susceptibility Testing has recently approved these ranges for publication in the next M31 document.


Sign in / Sign up

Export Citation Format

Share Document