Antibiotic Resistance Conferred by a Conjugative Plasmid and a Class I Integron in Vibrio cholerae O1 El Tor Strains Isolated in Albania and Italy

1999 ◽  
Vol 43 (3) ◽  
pp. 693-696 ◽  
Author(s):  
Vincenzo Falbo ◽  
Alessandra Carattoli ◽  
Fabio Tosini ◽  
Cristina Pezzella ◽  
Anna Maria Dionisi ◽  
...  

ABSTRACT Multidrug-resistant Vibrio cholerae O1 El Tor strains isolated during the 1994 outbreak of cholera in Albania and Italy were characterized for the molecular basis of antibiotic resistance. All strains were found to be resistant to tetracycline, streptomycin, spectinomycin, trimethoprim, sulfathiazole, and the vibriostatic compound O/129 (2,4-diamino-6,7-diisopropylteridine). Resistance genes were self-transferable by a conjugative plasmid of about 60 MDa, with the exception of spectinomycin resistance, which was conferred by theaadA1 gene cassette located in the bacterial chromosome within a class 1 integron. The resistance to trimethoprim and O/129 was conferred by the dfrA1 gene, which was present on the plasmid. Although the dfrA1 gene is known to be borne on an integron cassette, class 1, 2, or 3 intI genes were not detected as part of the plasmid DNA from the strains studied.

2006 ◽  
Vol 135 (5) ◽  
pp. 847-853 ◽  
Author(s):  
J. C. L. MWANSA ◽  
J. MWABA ◽  
C. LUKWESA ◽  
N. A. BHUIYAN ◽  
M. ANSARUZZAMAN ◽  
...  

SUMMARYAntibiotic resistance data, made available from laboratory records during eight cholera outbreaks between 1990 and 2004 showedVibrio choleraeserogroup O1 to have a low level of resistance (2–3%) to tetracycline during 1990–1991. Resistance increased for tetracycline (95%), chloramphenicol (78%), doxycycline (70%) and trimethoprim–sulphamethoxazole (97%) in subsequent outbreaks. A significant drop in resistance to tetracycline and chloramphenicol followed the adoption of a national policy to replace tetracycline with erythromycin for treating cholera. Sixty-nine strains from cholera outbreaks in Zambia between 1996 and 2004, were examined for antibiotic resistance and basic molecular traits. A 140 MDa conjugative, multidrug-resistant plasmid was found to encode tetracycline resistance in strains from 1996/1997 whereas strains from 2003/2004 were resistant to furazolidone, but susceptible to tetracycline, and lacked this plasmid. PCR revealed 25 of 27 strains from 1996/1997 harboured theintl1class 1 integron but lacked SXT, a conjugative transposon element. Similar screening of 42 strains from 2003/2004 revealed all carried SXT but not theintl1class 1 integron. All 69 strains, except two, one lackingctxAand the otherrstRand thus presumably truncated in the CTX prophage region, were positive for important epidemic markers namelyrfbO1,ctxA,rstR2, andtcpAof El Tor biotype. Effective cholera management is dependent on updated reports on culture and sensitivity to inform the choice of antibiotic. Since the emergence of antibiotic resistance may significantly influence strategies for controlling cholera, continuous monitoring of epidemic strains is crucial.


2000 ◽  
Vol 44 (6) ◽  
pp. 1568-1574 ◽  
Author(s):  
Didier Mazel ◽  
Broderick Dychinco ◽  
Vera A. Webb ◽  
Julian Davies

ABSTRACT The 72 Escherichia coli strains of the ECOR collection were examined for resistance to 10 different antimicrobial agents including ampicillin, tetracycline, mercury, trimethoprim, and sulfonamides. Eighteen strains were resistant to at least one of the antibiotics tested, and nearly 20% (14 of 72) were resistant to two or more. Several of the resistance determinants were shown to be carried on conjugative elements. The collection was screened for the presence of the three classes of integrons and for the sul1 gene, which is generally associated with class 1 integrons. The four strains found to carry a class 1 integron also had Tn21-encoded mercury resistance. One of the integrons encoded a novel streptomycin resistance gene, aadA7, with an attC site (or 59-base element) nearly identical to the attC site associated with the qacF gene cassette found in In40 (M.-C. Ploy, P. Courvalin, and T. Lambert, Antimicrob. Agents Chemother. 42:2557–2563, 1998). The conservation of associated attCsites among unrelated resistance cassettes is similar to arrangements found in the Vibrio cholerae superintegrons (D. Mazel, B. Dychinco, V. A. Webb, and J. Davies, Science 280:605–608, 1998) and supports the hypothesis that resistance cassettes are picked up from superintegron pools and independently assembled from unrelated genes and related attC sites.


2003 ◽  
Vol 47 (1) ◽  
pp. 342-349 ◽  
Author(s):  
Sally R. Partridge ◽  
Ruth M. Hall

ABSTRACT A complex class 1 integron, In34, found in a conjugative plasmid from a multidrug-resistant Klebsiella pneumoniae strain isolated in 1997 at a hospital in Sydney, Australia, was shown to have a backbone related to that of In2, which belongs to the In5 family. In In34, the aadB gene cassette replaces the aadA1a cassette in In2, and two additional resistance genes, dfrA10 and aphA1, that are not part of a gene cassette are present. The aphA1 gene is in a Tn4352-like transposon that is located in the tniA gene. The dfrA10 gene lies adjacent to a 2,154-bp DNA segment, known as the common region, that contains an open reading frame predicting a product of 513 amino acids (Orf513). Orf513 is 66 and 55% identical to the products of two further open reading frames that, like the common region, are found adjacent to antibiotic resistance genes. A 27-bp conserved sequence was found at one end of each type of common region. The loss of dfrA10 due to homologous recombination between flanking direct repeats and incorporation of the excised circle by homologous recombination were demonstrated. Part of In34 is identical to the sequenced portion of In7, which is from a multidrug-resistant Escherichia coli strain that had been isolated 19 years earlier in the same hospital. In34 and In7 are in plasmids that contain the same six resistance genes conferring resistance to ampicillin, chloramphenicol, gentamicin, kanamycin, neomycin, tobramycin, trimethoprim, and sulfonamides, but the plasmid backbones appear to be unrelated, suggesting that translocation of a multiple-drug-resistance-determining region as well as horizontal transfer may have occurred.


2000 ◽  
Vol 38 (10) ◽  
pp. 3774-3779 ◽  
Author(s):  
Anders Dalsgaard ◽  
Anita Forslund ◽  
Andreas Petersen ◽  
Derek J. Brown ◽  
Francisco Dias ◽  
...  

In the 1996–1997 cholera epidemic in Guinea-Bissau, surveillance for antimicrobial resistance showed the emergence of a multidrug-resistant strain of Vibrio cholerae O1 during the course of the epidemic. The strain was resistant to ampicillin, erythromycin, tetracycline, furazolidone, aminoglycosides, trimethoprim, and sulfamethoxazole. Concomitant with the emergence of this strain, we observed a resurgence in the number of registered cholera cases as well as an increase in the case fatality rate from 1.0% before the emergence of the multiple-drug-resistant strain to 5.3% after the emergence of the strain. Our study shows that the strain contained a 150-kb conjugative multiple-antibiotic resistance plasmid with class 1 integron-borne gene cassettes encoding resistance to trimethoprim (dhfrXII) and aminoglycosides [ant(3")-1a]). The finding of transferable resistance to almost all of the antibiotics commonly used to treat cholera is of great public health concern. Studies should be carried out to determine to what extent the strain or its resistance genes have been spread to other areas where cholera is endemic.


2020 ◽  
Vol 20 (2) ◽  
pp. 160-166
Author(s):  
Seyedeh Hanieh Eshaghi Zadeh ◽  
Hossein Fahimi ◽  
Fatemeh Fardsanei ◽  
Mohammad Mehdi Soltan Dallal

Background: Salmonellosis is a major food-borne disease worldwide. The increasing prevalence of antimicrobial resistance among food-borne pathogens such as Salmonella spp. is concerning. Objective: The main objective of this study is to identify class 1 integron genes and to determine antibiotic resistance patterns among Salmonella isolates from children with diarrhea. Methods: A total of 30 Salmonella isolates were recovered from children with diarrhea. The isolates were characterized for antimicrobial susceptibility and screened for the presence of class 1 integron genes (i.e. intI1, sulI1, and qacEΔ1). Results: The most prevalent serotype was Enteritidis 36.7%, followed by Paratyphi C (30%), and Typhimurium (16.7%). The highest rates of antibiotic resistance were obtained for nalidixic acid (53.3%), followed by streptomycin (40%), and tetracycline (36.7%). Regarding class 1 integrons, 36.7%, 26.7%, and 33.3% of the isolates carried intI1, SulI, and qacEΔ1, respectively, most of which (81.8%) were multidrug-resistant (MDR). Statistical analysis revealed that the presence of class 1 integron was significantly associated with resistance to streptomycin and tetracycline (p = 0.042). However, there was no association between class 1 integron and other antibiotics used in this study (p > 0.05). Conclusion: The high frequency of integron class 1 gene in MDR Salmonella strains indicates that these mobile genetic elements are versatile among different Salmonella serotypes, and associated with reduced susceptibility to many antimicrobials.


2003 ◽  
Vol 47 (6) ◽  
pp. 2006-2008 ◽  
Author(s):  
Hyunjoo Pai ◽  
Jeong-hum Byeon ◽  
Sunmi Yu ◽  
Bok Kwon Lee ◽  
Shukho Kim

ABSTRACT Six strains of Salmonella enterica serovar Typhi which were resistant to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole, streptomycin, tetracycline, and gentamicin were isolated in Korea. This multidrug resistance was transferred by a conjugative plasmid of about 50 kb. The plasmid harbored a class 1 integron, which included six resistance genes, aacA4b, catB8, aadA1, dfrA1, aac(6′)-IIa, and the novel blaP2, in that order. All of the isolates showed the same-size plasmids and the same ribotyping patterns, which suggests a clonal spread of these multidrug-resistant isolates.


Author(s):  
Jinru Chen ◽  
Joycelyn Quansah

Fresh produce-borne enteric bacterial pathogens with resistance to antibiotics have posed serious challenges to food safety and public health worldwide.  This study examined the antibiotic resistance profile of Salmonella enterica (n=33), previously isolated from exotic and indigenous leafy green vegetable samples (n=328) collected from 50 vegetable farms in 12 farming areas and 37 vegetable sellers in 4 market centers in Accra, Ghana during the period of March 2016 to March 2017, and determined the distribution of integrons among antibiotic-resistant isolates.  The susceptibility of the Salmonella isolates to 12 antibiotics was assayed using the standard disc diffusion assay.  The minimum inhibitory concentrations (MICs) of the five most resisted antibiotics were determined using the twofold macro dilution method.  PCR assay was used to detect the presence of integrons in Salmonella cells, and PCR product with amplified integron gene cassette was purified and sequenced using the Sanger sequencing technology.  The Salmonella isolates used in the study resisted at least one tested antibiotic, and multi-drug resistant (MDR) isolates were 30.3% (10/33).  Most isolates (81.8%) were resistant to sulfisoxazole.  The MICs of tetracycline, cefoxitin, streptomycin, ampicillin, and sulfisoxazole were 16, 32, 64, 64, and > 1,024 µg/ml, respectively.  A total of five different patterns of MDR were observed among the Salmonella isolates, and the common MDR patterns were AAuFox (30.3%) and AAuFoxSSu (18.1%).  One out of the 33 (3.0%) Salmonella isolates tested positive for class 1 integron with a gene cassette of about 800 bp.  Nucleotide sequencing revealed the class 1 integron carried a single gene dfrA7 .  Future studies are needed to confirm whether the consumption of contaminated leafy green vegetables is a route of acquiring antibiotic-resistant Salmonella by consumers in Accra, Ghana.


2010 ◽  
Vol 76 (11) ◽  
pp. 3657-3667 ◽  
Author(s):  
Janine Beutlich ◽  
Irene Rodr�guez ◽  
Andreas Schroeter ◽  
Annemarie K�sbohrer ◽  
Reiner Helmuth ◽  
...  

ABSTRACT Recently, Salmonella enterica subsp. enterica serovar Saintpaul has increasingly been observed in several countries, including Germany. However, the pathogenic potential and epidemiology of this serovar are not very well known. This study describes biological attributes of S. Saintpaul isolates obtained from turkeys in Germany based on characterization of their pheno- and genotypic properties. Fifty-five S. Saintpaul isolates from German turkeys and turkey-derived food products isolated from 2000 to 2007 were analyzed by using antimicrobial agent, organic solvent, and disinfectant susceptibility tests, isoelectric focusing, detection of resistance determinants, plasmid profiling, pulsed-field gel electrophoresis (PFGE), and hybridization experiments. These isolates were compared to an outgroup consisting of 24 S. Saintpaul isolates obtained from humans and chickens in Germany and from poultry and poultry products (including turkeys) in Netherlands. A common core resistance pattern was detected for 27 German turkey and turkey product isolates. This pattern included resistance (full or intermediate) to ampicillin, amoxicillin-clavulanic acid, gentamicin, kanamycin, nalidixic acid, streptomycin, spectinomycin, and sulfamethoxazole and intermediate resistance or decreased susceptibility to ciprofloxacin (MIC, 2 or 1 μg/ml, respectively) and several third-generation cephalosporins (including ceftiofur and cefoxitin [MIC, 4 to 2 and 16 to 2 μg/ml, respectively]). These isolates had the same core resistance genotype, with bla TEM-1, aadB, aadA2, sul1, a Ser83→Glu83 mutation in the gyrA gene, and a chromosomal class 1 integron carrying the aadB-aadA2 gene cassette. Their XbaI, BlnI, and combined XbaI-BlnI PFGE patterns revealed levels of genetic similarity of 93, 75, and 90%, respectively. This study revealed that a multiresistant S. Saintpaul clonal line is widespread in turkeys and turkey products in Germany and was also detected among German human fecal and Dutch poultry isolates.


2012 ◽  
Vol 86 (6) ◽  
pp. 1015-1017 ◽  
Author(s):  
Debdutta Bhattacharya ◽  
D. S. Sayi ◽  
Haimanti Bhattacharjee ◽  
R. Thamizhmani ◽  
A. P. Bharadwaj ◽  
...  

2004 ◽  
Vol 48 (7) ◽  
pp. 2364-2369 ◽  
Author(s):  
Masaaki Iwanaga ◽  
Claudia Toma ◽  
Tomoko Miyazato ◽  
Sithat Insisiengmay ◽  
Noboru Nakasone ◽  
...  

ABSTRACT Changes in the drug susceptibility pattern were observed in Vibrio cholerae O1 isolated in the Lao People's Democratic Republic during 1993 to 2000. In this study, 50 V. cholerae O1 strains were selected during this period for studying the presence of class I integron and SXT constin. Twenty-four streptomycin-resistant strains out of 26 isolated before 1997 contained a class I integron harboring the aadA1 gene cassette. Twenty-four strains isolated after 1997 contained an SXT constin (a large conjugative element). Twenty of the strains were resistant to chloramphenicol, tetracycline, streptomycin, and trimethoprim-sulfamethoxazole, while four strains were susceptible to the antibiotic tested. The resistance genes included in the SXT constins were floR, tetA, strAB, and sulII, which encode resistance to chloramphenicol, tetracycline, streptomycin, and sulfamethoxazole, respectively. The antibiotic resistance gene cluster was found to be deleted in the four susceptible strains. SXTLAOS did not contain dfrA1 or dfr18, which confer resistance to trimethoprim in SXTET and SXTMO10, respectively. A hot spot region of SXTLAOS was sequenced, and we identified two novel open reading frames showing homology to sO24 (exonuclease) and sO23 (helicase) of the genomic island associated with the multidrug resistance region of Salmonella enterica serovar Typhimurium DT104. Analysis of SXTLAOS showed that there is a continuous flux of genes among V. cholerae SXT constins which should be carefully monitored.


Sign in / Sign up

Export Citation Format

Share Document