scholarly journals Antiviral Activities and Cellular Toxicities of Modified 2′,3′-Dideoxy-2′,3′-Didehydrocytidine Analogues

2002 ◽  
Vol 46 (12) ◽  
pp. 3854-3860 ◽  
Author(s):  
Lieven J. Stuyver ◽  
Stefania Lostia ◽  
Marjorie Adams ◽  
Judy S. Mathew ◽  
Balakrishna S. Pai ◽  
...  

ABSTRACT The antiviral efficacies and cytotoxicities of 2′,3′- and 4′-substituted 2′,3′-didehydro-2′,3′-dideoxycytidine analogs were evaluated. All compounds were tested (i) against a wild-type human immunodeficiency virus type 1 (HIV-1) isolate (strain xxBRU) and lamivudine-resistant HIV-1 isolates, (ii) for their abilities to inhibit hepatitis B virus (HBV) production in the inducible HepAD38 cell line, and (iii) for their abilities to inhibit bovine viral diarrhea virus (BVDV) production in acutely infected Madin-Darby bovine kidney cells. Some compounds demonstrated potent antiviral activities against the wild-type HIV-1 strain (range of 90% effective concentrations [EC90s], 0.14 to 5.2 μM), but marked increases in EC90s were noted when the compounds were tested against the lamivudine-resistant HIV-1 strain (range of EC90s, 53 to >100 μM). The β-l-enantiomers of both classes of compounds were more potent than the corresponding β-d-enantiomers. None of the compounds showed antiviral activity in the assay that determined their abilities to inhibit BVDV, while two compounds inhibited HBV production in HepAD38 cells (EC90, 0.25 μM). The compounds were essentially noncytotoxic in human peripheral blood mononuclear cells and HepG2 cells. No effect on mitochondrial DNA levels was observed after a 7-day incubation with the nucleoside analogs at 10 μM. These studies demonstrate that (i) modification of the sugar ring of cytosine nucleoside analogs with a 4′-thia instead of an oxygen results in compounds with the ability to potently inhibit wild-type HIV-1 but with reduced potency against lamivudine-resistant virus and (ii) the antiviral activity of β-d-2′,3′-didehydro-2′,3′-dideoxy-5-fluorocytidine against wild-type HIV-1 (EC90, 0.08 μM) and lamivudine-resistant HIV-1 (EC90 = 0.15 μM) is markedly reduced by introduction of a 3′-fluorine in the sugar (EC90s of compound 2a, 37.5 and 494 μM, respectively).

2010 ◽  
Vol 54 (7) ◽  
pp. 2901-2909 ◽  
Author(s):  
E. Randall Lanier ◽  
Roger G. Ptak ◽  
Bernhard M. Lampert ◽  
Laurie Keilholz ◽  
Tracy Hartman ◽  
...  

ABSTRACT CMX157 is a lipid (1-0-hexadecyloxypropyl) conjugate of the acyclic nucleotide analog tenofovir (TFV) with activity against both wild-type and antiretroviral drug-resistant HIV strains, including multidrug nucleoside/nucleotide analog-resistant viruses. CMX157 was consistently >300-fold more active than tenofovir against multiple viruses in several different cell systems. CMX157 was active against all major subtypes of HIV-1 and HIV-2 in fresh human peripheral blood mononuclear cells (PBMCs) and against all HIV-1 strains evaluated in monocyte-derived macrophages, with 50% effective concentrations (EC50s) ranging between 0.20 and 7.2 nM. The lower CMX157 EC50s can be attributed to better cellular uptake of CMX157, resulting in higher intracellular levels of the active antiviral anabolite, TFV-diphosphate (TFV-PP), inside target cells. CMX157 produced >30-fold higher levels of TFV-PP in human PBMCs exposed to physiologically relevant concentrations of the compounds than did TFV. Unlike conventional prodrugs, including TFV disoproxil fumarate (Viread), CMX157 remains intact in plasma, facilitating uptake by target cells and decreasing relative systemic exposure to TFV. There was no detectable antagonism with CMX157 in combination with any marketed antiretroviral drug, and it possessed an excellent in vitro cytotoxicity profile. CMX157 is a promising clinical candidate to treat wild-type and antiretroviral drug-resistant HIV, including strains that fail to respond to all currently available nucleoside/nucleotide reverse transcriptase inhibitors.


2009 ◽  
Vol 84 (1) ◽  
pp. 88-95 ◽  
Author(s):  
Melody M. H. Li ◽  
Lily I. Wu ◽  
Michael Emerman

ABSTRACT The APOBEC3H gene is polymorphic in humans, with four major population-dependent haplotypes that encode proteins with different levels of antiviral activity. Haplotype II, present most frequently in African populations, encodes the most stable protein and is most active against human immunodeficiency virus type 1 (HIV-1). In contrast to human APOBEC3G, which can be completely counteracted by HIV-1 Vif, the protein encoded by APOBEC3H haplotype II is only partially sensitive to Vif, while the protein encoded by APOBEC3H haplotype I is completely resistant to HIV-1 Vif. We mapped a residue on APOBEC3H that determines this partial Vif sensitivity. However, it is unclear how HIV-1 can replicate in vivo without the ability to neutralize APOBEC3H antiviral activity. In order to directly address this question, we cloned vif genes from HIV-1-infected individuals with different APOBEC3H genotypes and tested them for their ability to inhibit human APOBEC3H. We found that while the APOBEC3H genotype of infected individuals significantly influences the activity of Vif encoded by their virus, none of the Vif variants tested can completely neutralize APOBEC3H as well as they neutralize APOBEC3G. Consistent with this genetic result, APOBEC3H protein expression in human peripheral blood mononuclear cells was below our limit of detection using newly developed antibodies against the endogenous protein. These results demonstrate that human APOBEC3H is not as strong of a selective force for current HIV-1 infections as human APOBEC3G.


2009 ◽  
Vol 53 (8) ◽  
pp. 3565-3568 ◽  
Author(s):  
Secondo Sonza ◽  
Adam Johnson ◽  
David Tyssen ◽  
Tim Spelman ◽  
Gareth R. Lewis ◽  
...  

ABSTRACT Polyanion-based microbicides have been developed to prevent the sexual transmission of human immunodeficiency virus (HIV). Recent data suggest that polyanions have the capacity to enhance HIV type 1 (HIV-1) replication at threshold antiviral concentrations. Evaluation of the microbicide candidates SPL7013 and PRO 2000 revealed no specific enhancement of two CCR5 HIV-1 strains in human peripheral blood mononuclear cells compared to enfuvirtide (Fuzeon). The enhancement effect is likely to be a function of the assay conditions and is not an intrinsic property of these polyanions.


1996 ◽  
Vol 40 (6) ◽  
pp. 1491-1497 ◽  
Author(s):  
J A Bilello ◽  
P A Bilello ◽  
K Stellrecht ◽  
J Leonard ◽  
D W Norbeck ◽  
...  

The therapeutic utility of a human immunodeficiency virus type 1 (HIV-1) protease inhibitor may depend on its intracellular concentration, which is a property of its uptake, metabolism, and/or efflux. Previous studies in our laboratory indicated that the addition of alpha 1 acid glycoprotein (alpha 1 AGP) to the medium markedly increased the amount of the drug required to limit infection in vitro. In this study, physiologically relevant concentrations of alpha 1 AGP and a radiolabeled inhibitor, A-80987, were used to determine both the uptake and activity of the agent in HIV-1-infected human peripheral blood mononuclear cells and cell lines. Both the uptake and efflux of 14C-labeled A-80987 were rapid (t1/2, < 5 min). Uptake of the drug was linearly dependent on the concentration but insensitive to the metabolic inhibitors KF, sodium cyanide, or CCCP (carbonyl cyanide m-chlorophenyl hydrazone). The amount of A-80987 which entered the cells was inversely proportional to the concentration of alpha 1 AGP (r2, 0.99) and directly proportional to the amount of extracellular non-protein-bound drug (r2, 0.99). Most importantly, the antiviral activity of the drug in HIV-1-infected peripheral blood mononuclear cells and MT-2 cells was directly related to the amount of intracellular A-80987. This study demonstrates that A-80987 binds to alpha 1 AGP, resulting in a free fraction below 10%. Cellular uptake of A-80987 is proportionally decreased in the presence of alpha 1 AGP, which results in less-than-expected antiviral activity. Importantly, we demonstrate for the first time that the inhibition of HIV protease is highly correlated with the amount of intracellular inhibitor.


2000 ◽  
Vol 11 (2) ◽  
pp. 135-140 ◽  
Author(s):  
Fatih M Uckun ◽  
Chen Mao ◽  
Sharon Pendergrass ◽  
Danielle Maher ◽  
Dan Zhu ◽  
...  

The composite non-nucleoside reverse transcriptase inhibitor (NNRTI) binding pocket model was used to study a number of thiourea analogues with different substitutions at the 4-phenyl position including N-[2-(4-methylphenyl)ethyl]-N′-[2-(5-bromopyridyl)]-thiourea (compound HI-244), which inhibited recombinant RT better than trovirdine or compound HI-275 with an unsubstituted phenyl ring. HI-244 effectively inhibited the replication of HIV-1 strain HTLVIIIB in human peripheral blood mononuclear cells with an IC50 value of 0.007 μM, which is equal to the IC50 value of trovirdine. Notably, HI-244 was 20 times more effective than trovirdine against the multidrug-resistant HIV-1 strain RT-MDR with a V106A mutation (as well as additional mutations involving the RT residues 74 V, 41L and 215Y) and seven times more potent than trovirdine against the NNRTI- resistant HIV-1 strain A17 with a Y181C mutation.


2010 ◽  
Vol 84 (22) ◽  
pp. 11981-11993 ◽  
Author(s):  
Chunling Hu ◽  
Dyana T. Saenz ◽  
Hind J. Fadel ◽  
William Walker ◽  
Mary Peretz ◽  
...  

ABSTRACT HIV-1 and certain other retroviruses initiate plus-strand synthesis in the center of the genome as well as at the standard retroviral 3′ polypurine tract. This peculiarity of reverse transcription results in a central DNA “flap” structure that has been of controversial functional significance. We mutated both HIV-1 flap-generating elements, the central polypurine tract (cPPT) and the central termination sequence (CTS). To avoid an ambiguity of previous studies, we did so without affecting integrase coding. DNA flap formation was disrupted but single-cycle infection was unaffected in all target cells tested, regardless of cell cycle status. Spreading HIV-1 infection was also normal in most T cell lines, and flap mutant viruses replicated equivalently to the wild type in nondividing cells, including macrophages. However, spreading infection of flap mutant HIV-1 was impaired in non-vif-permissive cells (HuT78, H9, and primary human peripheral blood mononuclear cells [PBMCs]), suggesting APOBEC3G (A3G) restriction. Single-cycle infections confirmed that vif-intact flap mutant HIV-1 is restricted by producer cell A3G/F. Combining the Δvif and cPPT-CTS mutations increased A3G restriction synergistically. Moreover, RNA interference knockdown of A3G in HuT78 cells released the block to flap mutant HIV-1 replication. Flap mutant HIV-1 also accrued markedly increased A3G-mediated G→A hypermutation compared to that of wild-type HIV-1 (a full log10 in the 0.36 kb downstream of the mutant cPPT). We suggest that the triple-stranded DNA structure, the flap, is not the consequential outcome. The salient functional feature is central plus-strand initiation, which functions as a second line of defense against single-stranded DNA editing by A3 proteins that survive producer cell degradation by Vif.


Sign in / Sign up

Export Citation Format

Share Document