scholarly journals Expression of Green Fluorescent Protein Fused to Magnetosome Proteins in Microaerophilic Magnetotactic Bacteria

2008 ◽  
Vol 74 (15) ◽  
pp. 4944-4953 ◽  
Author(s):  
Claus Lang ◽  
Dirk Schüler

ABSTRACT The magnetosomes of magnetotactic bacteria are prokaryotic organelles consisting of a magnetite crystal bounded by a phospholipid bilayer that contains a distinct set of proteins with various functions. Because of their unique magnetic and crystalline properties, magnetosome particles are potentially useful as magnetic nanoparticles in a number of applications, which in many cases requires the coupling of functional moieties to the magnetosome membrane. In this work, we studied the use of green fluorescent protein (GFP) as a reporter for the magnetosomal localization and expression of fusion proteins in the microaerophilic Magnetospirillum gryphiswaldense by flow cytometry, fluorescence microscopy, and biochemical analysis. Although optimum conditions for high fluorescence and magnetite synthesis were mutually exclusive, we established oxygen-limited growth conditions, which supported growth, magnetite biomineralization, and GFP fluorophore formation at reasonable rates. Under these optimized conditions, we studied the subcellular localization and expression of the GFP-tagged magnetosome proteins MamC, MamF, and MamG by fluorescence microscopy and immunoblotting. While all fusions specifically localized at the magnetosome membrane, MamC-GFP displayed the strongest expression and fluorescence. MamC-GFP-tagged magnetosomes purified from cells displayed strong fluorescence, which was sensitive to detergents but stable under a wide range of temperature and salt concentrations. In summary, our data demonstrate the use of GFP as a reporter for protein localization under magnetite-forming conditions and the utility of MamC as an anchor for magnetosome-specific display of heterologous gene fusions.

2011 ◽  
Vol 19 (5) ◽  
pp. 8-10
Author(s):  
Stephen W. Carmichael ◽  
Philip Oshel

Localizing specific proteins within cells, tissues, and organisms has been a goal of microscopists for generations. In the early 1990s, a breakthrough was made when a molecule originally derived from a jellyfish was introduced as a probe for fluorescence microscopy. This molecule is green fluorescent protein (GFP), and it has become well known for its usefulness in localizing proteins at the level of the light microscope. It is also well known that electron microscopy (EM) offers far superior spatial resolution over light microscopy, but the application of probes to localize specific proteins has required antibodies conjugated with colloidal metals (such as gold). Delivery of antibodies into the cell commonly requires detergents to permeabilize the cell membrane, which compromises the ultrastructural detail. Another breakthrough was recently published on-line by Xiaokun Shu, Varda Lev-Ram, Thomas Deerinck, Yingchuan Qi, Ericka Ramko, Michael Davidson, Yishi Jin, Mark Ellisman, and Roger Tsien: they have developed a method similar to using GFP for light microscopy, but for specifically tagging proteins at the EM level.


2009 ◽  
Vol 9 (1) ◽  
pp. 224-226 ◽  
Author(s):  
Chengda Zhang ◽  
James B. Konopka

ABSTRACT Fusions to the green fluorescent protein (GFP) are an effective way to monitor protein localization. However, altered codon usage in Candida species has delayed implementation of new variants. Examination of three new GFP variants in Candida albicans showed that one has higher signal intensity and increased resistance to photobleaching.


2004 ◽  
Vol 3 (1) ◽  
pp. 105-111 ◽  
Author(s):  
Christina Vessoni Penna Thereza ◽  
Ishii Marina ◽  
de Souza Luciana.Cambricoli ◽  
Cholewa Olivia

2000 ◽  
Vol 68 (2) ◽  
pp. 956-959 ◽  
Author(s):  
Derrick H. Lenz ◽  
Christine L. Weingart ◽  
Alison A. Weiss

ABSTRACT Previous studies have reported that phagocytosed Bordetella pertussis survives in human neutrophils. This issue has been reexamined. Opsonized or unopsonized bacteria expressing green fluorescent protein (GFP) were incubated with adherent human neutrophils. Phagocytosis was quantified by fluorescence microscopy, and the viability of phagocytosed bacteria was determined by colony counts following treatment with polymyxin B to kill extracellular bacteria. Only 1 to 2% of the phagocytosed bacteria remained viable. Opsonization with heat-inactivated immune serum reduced the amount of attachment and phagocytosis of the bacteria but did not alter survival rates. In contrast to previous reports, these data suggest that phagocytosed B. pertussis bacteria are killed by human neutrophils.


Sign in / Sign up

Export Citation Format

Share Document