Phylogenetically Distinct Phylotypes Modulate Nitrification in a Paddy Soil
ABSTRACTPaddy fields represent a unique ecosystem in which regular flooding occurs, allowing for rice cultivation. However, the taxonomic identity of the microbial functional guilds that catalyze soil nitrification remains poorly understood. In this study, we provide molecular evidence for distinctly different phylotypes of nitrifying communities in a neutral paddy soil using high-throughput pyrosequencing and DNA-based stable isotope probing (SIP). Following urea addition, the levels of soil nitrate increased significantly, accompanied by an increase in the abundance of the bacterial and archaealamoAgene in microcosms subjected to SIP (SIP microcosms) during a 56-day incubation period. High-throughput fingerprints of the total 16S rRNA genes in SIP microcosms indicated that nitrification activity positively correlated with the abundance ofNitrosospira-like ammonia-oxidizing bacteria (AOB), soil group 1.1b-like ammonia-oxidizing archaea (AOA), andNitrospira-like nitrite-oxidizing bacteria (NOB). Pyrosequencing of13C-labeled DNA further revealed that13CO2was assimilated by these functional groups to a much greater extent than by marine group 1.1a-associated AOA andNitrobacter-like NOB. Phylogenetic analysis demonstrated that active AOB communities were closely affiliated withNitrosospirasp. strain L115 and theNitrosospira multiformislineage and that the13C-labeled AOA were related to phylogenetically distinct groups, including the moderately thermophilic “CandidatusNitrososphaera gargensis,” uncultured fosmid 29i4, and acidophilic “CandidatusNitrosotalea devanaterra” lineages. These results suggest that a wide variety of microorganisms were involved in soil nitrification, implying physiological diversification of soil nitrifying communities that are constantly exposed to environmental fluctuations in paddy fields.