scholarly journals The RNA Polymerase Omega Factor RpoZ Is Regulated by PhoP and Has an Important Role in Antibiotic Biosynthesis and Morphological Differentiation in Streptomyces coelicolor

2011 ◽  
Vol 77 (21) ◽  
pp. 7586-7594 ◽  
Author(s):  
Fernando Santos-Beneit ◽  
Mónica Barriuso-Iglesias ◽  
Lorena T. Fernández-Martínez ◽  
Miriam Martínez-Castro ◽  
Alberto Sola-Landa ◽  
...  

ABSTRACTThe RNA polymerase (RNAP) omega factor (ω) forms a complex with the α2ββ′ core of this enzyme in bacteria. We have characterized therpoZgene ofStreptomyces coelicolor, which encodes a small protein (90 amino acids) identified as the omega factor. Deletion of therpoZgene resulted in strains with a slightly reduced growth rate, although they were still able to sporulate. The biosynthesis of actinorhodin and, particularly, that of undecylprodigiosin were drastically reduced in the ΔrpoZstrain, suggesting that expression of these secondary metabolite biosynthetic genes is dependent upon the presence of RpoZ in the RNAP complex. Complementation of the ΔrpoZmutant with the wild-typerpoZallele restored both phenotype and antibiotic production. Interestingly, therpoZgene contains a PHO box in its promoter region. DNA binding assays showed that the phosphate response regulator PhoP binds to such a region. Since luciferase reporter studies showed thatrpoZpromoter activity was increased in a ΔphoPbackground, it can be concluded thatrpoZis controlled negatively by PhoP, thus connecting phosphate depletion regulation with antibiotic production and morphological differentiation inStreptomyces.

2011 ◽  
Vol 193 (22) ◽  
pp. 6358-6365 ◽  
Author(s):  
Marcin Wolański ◽  
Rafał Donczew ◽  
Agnieszka Kois-Ostrowska ◽  
Paweł Masiewicz ◽  
Dagmara Jakimowicz ◽  
...  

AdpA is a key regulator of morphological differentiation inStreptomyces. In contrast toStreptomyces griseus, relatively little is known about AdpA protein functions inStreptomyces coelicolor. Here, we report for the first time the translation accumulation profile of theS. coelicoloradpA(adpASc) gene; the level ofS. coelicolorAdpA (AdpASc) increased, reaching a maximum in the early stage of aerial mycelium formation (after 36 h), and remained relatively stable for the next several hours (48 to 60 h), and then the signal intensity decreased considerably. AdpAScspecifically binds theadpAScpromoter regionin vitroandin vivo, suggesting that its expression is autoregulated; surprisingly, in contrast toS. griseus, the protein presumably acts as a transcriptional activator. We also demonstrate a direct influence of AdpAScon the expression of several genes whose products play key roles in the differentiation ofS. coelicolor: STI, a protease inhibitor; RamR, an atypical response regulator that itself activates expression of the genes for a small modified peptide that is required for aerial growth; and ClpP1, an ATP-dependent protease. The diverse influence of AdpAScprotein on the expression of the analyzed genes presumably results mainly from different affinities of AdpAScprotein to individual promoters.


2014 ◽  
Vol 80 (8) ◽  
pp. 2417-2428 ◽  
Author(s):  
Sergio Rico ◽  
Ramón I. Santamaría ◽  
Ana Yepes ◽  
Héctor Rodríguez ◽  
Emma Laing ◽  
...  

ABSTRACTThe atypical two-component system (TCS) AbrC1/C2/C3 (encoded bySCO4598,SCO4597, andSCO4596), comprising two histidine kinases (HKs) and a response regulator (RR), is crucial for antibiotic production inStreptomyces coelicolorand for morphological differentiation under certain nutritional conditions. In this study, we demonstrate that deletion of the RR-encoding gene,abrC3(SCO4596), results in a dramatic decrease in actinorhodin (ACT) and undecylprodiginine (RED) production and delays morphological development. In contrast, the overexpression ofabrC3in the parent strain leads to a 33% increase in ACT production in liquid medium. Transcriptomic analysis and chromatin immunoprecipitation with microarray technology (ChIP-chip) analysis of the ΔabrC3mutant and the parent strain revealed that AbrC3 directly controls ACT production by binding to theactII-ORF4promoter region; this was independently verified byin vitroDNA-binding assays. This binding is dependent on the sequence 5′-GAASGSGRMS-3′. In contrast, the regulation of RED production is not due to direct binding of AbrC3 to either theredZorredDpromoter region. This study also revealed other members of the AbrC3 regulon: AbrC3 is a positive autoregulator which also binds to the promoter regions ofSCO0736,bdtA(SCO3328),absR1(SCO6992), andSCO6809. The direct targets share the 10-base consensus binding sequence and may be responsible for some of the phenotypes of the ΔabrC3mutant. The identification of the AbrC3 regulon as part of the complex regulatory network governing antibiotic production widens our knowledge regarding TCS involvement in control of antibiotic synthesis and may contribute to the rational design of new hyperproducer host strains through genetic manipulation of such systems.


2017 ◽  
Vol 83 (6) ◽  
Author(s):  
Zhong Xu ◽  
Yemin Wang ◽  
Keith F. Chater ◽  
Hong-Yu Ou ◽  
H. Howard Xu ◽  
...  

ABSTRACT Gram-positive Streptomyces bacteria produce thousands of bioactive secondary metabolites, including antibiotics. To systematically investigate genes affecting secondary metabolism, we developed a hyperactive transposase-based Tn5 transposition system and employed it to mutagenize the model species Streptomyces coelicolor, leading to the identification of 51,443 transposition insertions. These insertions were distributed randomly along the chromosome except for some preferred regions associated with relatively low GC content in the chromosomal core. The base composition of the insertion site and its flanking sequences compiled from the 51,443 insertions implied a 19-bp expanded target site surrounding the insertion site, with a slight nucleic acid base preference in some positions, suggesting a relative randomness of Tn5 transposition targeting in the high-GC Streptomyces genome. From the mutagenesis library, 724 mutants involving 365 genes had altered levels of production of the tripyrrole antibiotic undecylprodigiosin (RED), including 17 genes in the RED biosynthetic gene cluster. Genetic complementation revealed that most of the insertions (more than two-thirds) were responsible for the changed antibiotic production. Genes associated with branched-chain amino acid biosynthesis, DNA metabolism, and protein modification affected RED production, and genes involved in signaling, stress, and transcriptional regulation were overrepresented. Some insertions caused dramatic changes in RED production, identifying future targets for strain improvement. IMPORTANCE High-GC Gram-positive streptomycetes and related actinomycetes have provided more than 100 clinical drugs used as antibiotics, immunosuppressants, and antitumor drugs. Their genomes harbor biosynthetic genes for many more unknown compounds with potential as future drugs. Here we developed a useful genome-wide mutagenesis tool based on the transposon Tn5 for the study of secondary metabolism and its regulation. Using Streptomyces coelicolor as a model strain, we found that chromosomal insertion was relatively random, except at some hot spots, though there was evidence of a slightly preferred 19-bp target site. We then used prodiginine production as a model to systematically survey genes affecting antibiotic biosynthesis, providing a global view of antibiotic regulation. The analysis revealed 348 genes that modulate antibiotic production, among which more than half act to reduce production. These might be valuable targets in future investigations of regulatory mechanisms, for strain improvement, and for the activation of silent biosynthetic gene clusters.


2007 ◽  
Vol 189 (11) ◽  
pp. 4315-4319 ◽  
Author(s):  
Seung-Hoon Kang ◽  
Jianqiang Huang ◽  
Han-Na Lee ◽  
Yoon-Ah Hur ◽  
Stanley N. Cohen ◽  
...  

ABSTRACT Using Streptomyces coelicolor microarrays to discover regulators of gene expression in other Streptomyces species, we identified wblA, a whiB-like gene encoding a putative transcription factor, as a down-regulator of doxorubicin biosynthesis in Streptomyces peucetius. Further analysis revealed that wblA functions pleiotropically to control antibiotic production and morphological differentiation in streptomycetes. Our results reveal a novel biological role for wblA and show the utility of interspecies microarray analysis for the investigation of streptomycete gene expression.


2014 ◽  
Vol 80 (22) ◽  
pp. 6879-6887 ◽  
Author(s):  
Pin Yu ◽  
Shui-Ping Liu ◽  
Qing-Ting Bu ◽  
Zhen-Xing Zhou ◽  
Zhen-Hong Zhu ◽  
...  

ABSTRACTDetailed mechanisms ofWhiB-like (Wbl) proteins involved in antibiotic biosynthesis and morphological differentiation are poorly understood. Here, we characterize the role of WblAch, aStreptomyces chattanoogensisL10 protein belonging to this superfamily. Based on DNA microarray data and verified by real-time quantitative PCR (qRT-PCR), the expression ofwblAchwas shown to be positively regulated by AdpAch. Gel retardation assays and DNase I footprinting experiments showed that AdpAchhas specific DNA-binding activity for the promoter region ofwblAch. Gene disruption and genetic complementation revealed that WblAchacts in a positive manner to regulate natamycin production. WhenwblAchwas overexpressed in the wild-type strain, the natamycin yield was increased by ∼30%. This provides a strategy to generate improved strains for natamycin production. Moreover, transcriptional analysis showed that the expression levels ofwhigenes (includingwhiA,whiB,whiH, andwhiI) were severely depressed in the ΔwblAchmutant, suggesting that WblAchplays a part in morphological differentiation by influencing the expression of thewhigenes.


2017 ◽  
Vol 199 (12) ◽  
Author(s):  
Yoshihiro Mouri ◽  
Kenji Konishi ◽  
Azusa Fujita ◽  
Takeaki Tezuka ◽  
Yasuo Ohnishi

ABSTRACT The rare actinomycete Actinoplanes missouriensis forms sporangia, including hundreds of flagellated spores that start swimming as zoospores after their release. Under conditions suitable for vegetative growth, zoospores stop swimming and germinate. A comparative proteome analysis between zoospores and germinating cells identified 15 proteins that were produced in larger amounts in germinating cells. They include an orthologue of BldD (herein named AmBldD [BldD of A. missouriensis]), which is a transcriptional regulator involved in morphological development and secondary metabolism in Streptomyces. AmBldD was detected in mycelia during vegetative growth but was barely detected in mycelia during the sporangium-forming phase, in spite of the constant transcription of AmbldD throughout growth. An AmbldD mutant started to form sporangia much earlier than the wild-type strain, and the resulting sporangia were morphologically abnormal. Recombinant AmBldD bound a palindromic sequence, the AmBldD box, located upstream from AmbldD. 3′,5′-Cyclic di-GMP significantly enhanced the in vitro DNA-binding ability of AmBldD. A chromatin immunoprecipitation-sequencing analysis and an in silico search for AmBldD boxes revealed that AmBldD bound 346 genomic loci that contained the 19-bp inverted repeat 5′-NN(G/A)TNACN(C/G)N(G/C)NGTNA(C/T)NN-3′ as the consensus AmBldD-binding sequence. The transcriptional analysis of 27 selected AmBldD target gene candidates indicated that AmBldD should repress 12 of the 27 genes, including bldM, ssgB, whiD, ddbA, and wblA orthologues. These genes are involved in morphological development in Streptomyces coelicolor A3(2). Thus, AmBldD is a global transcriptional regulator that seems to repress the transcription of tens of genes during vegetative growth, some of which are likely to be required for sporangium formation. IMPORTANCE The rare actinomycete Actinoplanes missouriensis undergoes complex morphological differentiation, including sporangium formation. However, almost no molecular biological studies have been conducted on this bacterium. BldD is a key global regulator involved in the morphological development of streptomycetes. BldD orthologues are highly conserved among sporulating actinomycetes, but no BldD orthologues, except one in Saccharopolyspora erythraea, have been studied outside the streptomycetes. Here, it was revealed that the BldD orthologue AmBldD is essential for normal developmental processes in A. missouriensis. The AmBldD regulon seems to be different from the BldD regulon in Streptomyces coelicolor A3(2), but they share four genes that are involved in morphological differentiation in S. coelicolor A3(2).


2013 ◽  
Vol 79 (20) ◽  
pp. 6447-6451 ◽  
Author(s):  
Jung-Hoon Lee ◽  
Marcha L. Gatewood ◽  
George H. Jones

ABSTRACTUsing insertional mutagenesis, we have disrupted the RNase III gene,rnc, of the actinomycin-producing streptomycete,Streptomyces antibioticus. Disruption was verified by Southern blotting. The resulting strain grows more vigorously than its parent on actinomycin production medium but produces significantly lower levels of actinomycin. Complementation of therncdisruption with the wild-typerncgene fromS. antibioticusrestored actinomycin production to nearly wild-type levels. Western blotting experiments demonstrated that the disruptant did not produce full-length or truncated forms of RNase III. Thus, as is the case inStreptomyces coelicolor, RNase III is required for antibiotic production inS. antibioticus. No differences in the chemical half-lives of bulk mRNA were observed in a comparison of theS. antibioticus rncmutant and its parental strain.


Sign in / Sign up

Export Citation Format

Share Document