scholarly journals Deciphering the Regulon of Streptomyces coelicolor AbrC3, a Positive Response Regulator of Antibiotic Production

2014 ◽  
Vol 80 (8) ◽  
pp. 2417-2428 ◽  
Author(s):  
Sergio Rico ◽  
Ramón I. Santamaría ◽  
Ana Yepes ◽  
Héctor Rodríguez ◽  
Emma Laing ◽  
...  

ABSTRACTThe atypical two-component system (TCS) AbrC1/C2/C3 (encoded bySCO4598,SCO4597, andSCO4596), comprising two histidine kinases (HKs) and a response regulator (RR), is crucial for antibiotic production inStreptomyces coelicolorand for morphological differentiation under certain nutritional conditions. In this study, we demonstrate that deletion of the RR-encoding gene,abrC3(SCO4596), results in a dramatic decrease in actinorhodin (ACT) and undecylprodiginine (RED) production and delays morphological development. In contrast, the overexpression ofabrC3in the parent strain leads to a 33% increase in ACT production in liquid medium. Transcriptomic analysis and chromatin immunoprecipitation with microarray technology (ChIP-chip) analysis of the ΔabrC3mutant and the parent strain revealed that AbrC3 directly controls ACT production by binding to theactII-ORF4promoter region; this was independently verified byin vitroDNA-binding assays. This binding is dependent on the sequence 5′-GAASGSGRMS-3′. In contrast, the regulation of RED production is not due to direct binding of AbrC3 to either theredZorredDpromoter region. This study also revealed other members of the AbrC3 regulon: AbrC3 is a positive autoregulator which also binds to the promoter regions ofSCO0736,bdtA(SCO3328),absR1(SCO6992), andSCO6809. The direct targets share the 10-base consensus binding sequence and may be responsible for some of the phenotypes of the ΔabrC3mutant. The identification of the AbrC3 regulon as part of the complex regulatory network governing antibiotic production widens our knowledge regarding TCS involvement in control of antibiotic synthesis and may contribute to the rational design of new hyperproducer host strains through genetic manipulation of such systems.

2011 ◽  
Vol 193 (22) ◽  
pp. 6358-6365 ◽  
Author(s):  
Marcin Wolański ◽  
Rafał Donczew ◽  
Agnieszka Kois-Ostrowska ◽  
Paweł Masiewicz ◽  
Dagmara Jakimowicz ◽  
...  

AdpA is a key regulator of morphological differentiation inStreptomyces. In contrast toStreptomyces griseus, relatively little is known about AdpA protein functions inStreptomyces coelicolor. Here, we report for the first time the translation accumulation profile of theS. coelicoloradpA(adpASc) gene; the level ofS. coelicolorAdpA (AdpASc) increased, reaching a maximum in the early stage of aerial mycelium formation (after 36 h), and remained relatively stable for the next several hours (48 to 60 h), and then the signal intensity decreased considerably. AdpAScspecifically binds theadpAScpromoter regionin vitroandin vivo, suggesting that its expression is autoregulated; surprisingly, in contrast toS. griseus, the protein presumably acts as a transcriptional activator. We also demonstrate a direct influence of AdpAScon the expression of several genes whose products play key roles in the differentiation ofS. coelicolor: STI, a protease inhibitor; RamR, an atypical response regulator that itself activates expression of the genes for a small modified peptide that is required for aerial growth; and ClpP1, an ATP-dependent protease. The diverse influence of AdpAScprotein on the expression of the analyzed genes presumably results mainly from different affinities of AdpAScprotein to individual promoters.


2011 ◽  
Vol 77 (21) ◽  
pp. 7586-7594 ◽  
Author(s):  
Fernando Santos-Beneit ◽  
Mónica Barriuso-Iglesias ◽  
Lorena T. Fernández-Martínez ◽  
Miriam Martínez-Castro ◽  
Alberto Sola-Landa ◽  
...  

ABSTRACTThe RNA polymerase (RNAP) omega factor (ω) forms a complex with the α2ββ′ core of this enzyme in bacteria. We have characterized therpoZgene ofStreptomyces coelicolor, which encodes a small protein (90 amino acids) identified as the omega factor. Deletion of therpoZgene resulted in strains with a slightly reduced growth rate, although they were still able to sporulate. The biosynthesis of actinorhodin and, particularly, that of undecylprodigiosin were drastically reduced in the ΔrpoZstrain, suggesting that expression of these secondary metabolite biosynthetic genes is dependent upon the presence of RpoZ in the RNAP complex. Complementation of the ΔrpoZmutant with the wild-typerpoZallele restored both phenotype and antibiotic production. Interestingly, therpoZgene contains a PHO box in its promoter region. DNA binding assays showed that the phosphate response regulator PhoP binds to such a region. Since luciferase reporter studies showed thatrpoZpromoter activity was increased in a ΔphoPbackground, it can be concluded thatrpoZis controlled negatively by PhoP, thus connecting phosphate depletion regulation with antibiotic production and morphological differentiation inStreptomyces.


2007 ◽  
Vol 189 (14) ◽  
pp. 5284-5292 ◽  
Author(s):  
Nancy L. McKenzie ◽  
Justin R. Nodwell

ABSTRACT The AbsA two-component signal transduction system, comprised of the sensor kinase AbsA1 and the response regulator AbsA2, acts as a negative regulator of antibiotic production in Streptomyces coelicolor, for which the phosphorylated form of AbsA2 (AbsA2∼P) is the agent of repression. In this study, we used chromatin immunoprecipitation to show that AbsA2 binds the promoter regions of actII-ORF4, cdaR, and redZ, which encode pathway-specific activators for actinorhodin, calcium-dependent antibiotic, and undecylprodigiosin, respectively. We confirm that these interactions also occur in vitro and that the binding of AbsA2 to each gene is enhanced by phosphorylation. Induced expression of actII-ORF4 and redZ in the hyperrepressive absA1 mutant (C542) brought about pathway-specific restoration of actinorhodin and undecylprodigiosin production, respectively. Our results suggest that AbsA2∼P interacts with as many as four sites in the region that includes the actII-ORF4 promoter. These data suggest that AbsA2∼P inhibits antibiotic production by directly interfering with the expression of pathway-specific regulators of antibiotic biosynthetic gene clusters.


2015 ◽  
Vol 81 (19) ◽  
pp. 6649-6659 ◽  
Author(s):  
Laura Navone ◽  
Juan Pablo Macagno ◽  
Cuauhtémoc Licona-Cassani ◽  
Esteban Marcellin ◽  
Lars K. Nielsen ◽  
...  

ABSTRACTStreptomycesspecies are native inhabitants of soil, a natural environment where nutrients can be scarce and competition fierce. They have evolved ways to metabolize unusual nutrients, such as purines and its derivatives, which are highly abundant in soil. Catabolism of these uncommon carbon and nitrogen sources needs to be tightly regulated in response to nutrient availability and environmental stimulus. Recently, the allantoin degradation pathway was characterized inStreptomyces coelicolor. However, there are questions that remained unanswered, particularly regarding pathway regulation. Here, using a combination of proteomics and genetic approaches, we identified the negative regulator of the allantoin pathway, AllR.In vitrostudies confirmed that AllR binds to the promoter regions of allantoin catabolic genes and determined the AllR DNA binding motif. In addition, effector studies showed that allantoic acid, and glyoxylate, to a lesser extent, inhibit the binding of AllR to the DNA. Inactivation of AllR repressor leads to the constitutive expression of the AllR regulated genes and intriguingly impairs actinorhodin and undecylprodigiosin production. Genetics and proteomics analysis revealed that among all genes from the allantoin pathway that are upregulated in theallRmutant, thehyigene encoding a hydroxypyruvate isomerase (Hyi) is responsible of the impairment of antibiotic production.


2008 ◽  
Vol 190 (20) ◽  
pp. 6903-6908 ◽  
Author(s):  
Ya-Wen Lu ◽  
Adrianna K. San Roman ◽  
Amy M. Gehring

ABSTRACT The phosphopantetheinyl transferase genes SCO5883 (redU) and SCO6673 were disrupted in Streptomyces coelicolor. The redU mutants did not synthesize undecylprodigiosin, while SCO6673 mutants failed to produce calcium-dependent antibiotic. Neither gene was essential for actinorhodin production or morphological development in S. coelicolor, although their mutation could influence these processes.


2017 ◽  
Vol 199 (12) ◽  
Author(s):  
Yoshihiro Mouri ◽  
Kenji Konishi ◽  
Azusa Fujita ◽  
Takeaki Tezuka ◽  
Yasuo Ohnishi

ABSTRACT The rare actinomycete Actinoplanes missouriensis forms sporangia, including hundreds of flagellated spores that start swimming as zoospores after their release. Under conditions suitable for vegetative growth, zoospores stop swimming and germinate. A comparative proteome analysis between zoospores and germinating cells identified 15 proteins that were produced in larger amounts in germinating cells. They include an orthologue of BldD (herein named AmBldD [BldD of A. missouriensis]), which is a transcriptional regulator involved in morphological development and secondary metabolism in Streptomyces. AmBldD was detected in mycelia during vegetative growth but was barely detected in mycelia during the sporangium-forming phase, in spite of the constant transcription of AmbldD throughout growth. An AmbldD mutant started to form sporangia much earlier than the wild-type strain, and the resulting sporangia were morphologically abnormal. Recombinant AmBldD bound a palindromic sequence, the AmBldD box, located upstream from AmbldD. 3′,5′-Cyclic di-GMP significantly enhanced the in vitro DNA-binding ability of AmBldD. A chromatin immunoprecipitation-sequencing analysis and an in silico search for AmBldD boxes revealed that AmBldD bound 346 genomic loci that contained the 19-bp inverted repeat 5′-NN(G/A)TNACN(C/G)N(G/C)NGTNA(C/T)NN-3′ as the consensus AmBldD-binding sequence. The transcriptional analysis of 27 selected AmBldD target gene candidates indicated that AmBldD should repress 12 of the 27 genes, including bldM, ssgB, whiD, ddbA, and wblA orthologues. These genes are involved in morphological development in Streptomyces coelicolor A3(2). Thus, AmBldD is a global transcriptional regulator that seems to repress the transcription of tens of genes during vegetative growth, some of which are likely to be required for sporangium formation. IMPORTANCE The rare actinomycete Actinoplanes missouriensis undergoes complex morphological differentiation, including sporangium formation. However, almost no molecular biological studies have been conducted on this bacterium. BldD is a key global regulator involved in the morphological development of streptomycetes. BldD orthologues are highly conserved among sporulating actinomycetes, but no BldD orthologues, except one in Saccharopolyspora erythraea, have been studied outside the streptomycetes. Here, it was revealed that the BldD orthologue AmBldD is essential for normal developmental processes in A. missouriensis. The AmBldD regulon seems to be different from the BldD regulon in Streptomyces coelicolor A3(2), but they share four genes that are involved in morphological differentiation in S. coelicolor A3(2).


2015 ◽  
Vol 197 (11) ◽  
pp. 1886-1892 ◽  
Author(s):  
Jennifer Tsang ◽  
Takanori Hirano ◽  
Timothy R. Hoover ◽  
Jonathan L. McMurry

ABSTRACTFlagellar biogenesis is a complex process that involves multiple checkpoints to coordinate transcription of flagellar genes with the assembly of the flagellum. InHelicobacter pylori, transcription of the genes needed in the middle stage of flagellar biogenesis is governed by RpoN and the two-component system consisting of the histidine kinase FlgS and response regulator FlgR. In response to an unknown signal, FlgS autophosphorylates and transfers the phosphate to FlgR, initiating transcription from RpoN-dependent promoters. In the present study, export apparatus protein FlhA was examined as a potential signal protein. Deletion of its N-terminal cytoplasmic sequence dramatically decreased expression of two RpoN-dependent genes,flaBandflgE. Optical biosensing demonstrated a high-affinity interaction between FlgS and a peptide consisting of residues 1 to 25 of FlhA (FlhANT). TheKD(equilibrium dissociation constant) was 21 nM and was characterized by fast-on (kon= 2.9 × 104M−1s−1) and slow-off (koff= 6.2 × 10−4s−1) kinetics. FlgS did not bind peptides consisting of smaller fragments of the FlhANTsequence. Analysis of binding to purified fragments of FlgS demonstrated that the C-terminal portion of the protein containing the kinase domain binds FlhANT. FlhANTbinding did not stimulate FlgS autophosphorylationin vitro, suggesting that FlhA facilitates interactions between FlgS and other structures required to stimulate autophosphorylation.IMPORTANCEThe high-affinity binding of FlgS to FlhA characterized in this study points to an additional role for FlhA in flagellar assembly. Beyond its necessity for type III secretion, the N-terminal cytoplasmic sequence of FlhA is required for RpoN-dependent gene expression via interaction with the C-terminal kinase domain of FlgS.


2014 ◽  
Vol 58 (9) ◽  
pp. 5191-5201 ◽  
Author(s):  
Giorgia Letizia Marcone ◽  
Elisa Binda ◽  
Lucia Carrano ◽  
Mervyn Bibb ◽  
Flavia Marinelli

ABSTRACTGlycopeptides and β-lactams inhibit bacterial peptidoglycan synthesis in Gram-positive bacteria; resistance to these antibiotics is studied intensively in enterococci and staphylococci because of their relevance to infectious disease. Much less is known about antibiotic resistance in glycopeptide-producing actinomycetes that are likely to represent the evolutionary source of resistance determinants found in bacterial pathogens.Nonomuraeasp. ATCC 39727, the producer of A40926 (the precursor for the semisynthetic dalbavancin), does not harbor the canonicalvanHAXgenes. Consequently, we investigated the role of the β-lactam-sensitived,d-peptidase/d,d-carboxypeptidase encoded byvanYn, the onlyvan-like gene found in the A40926 biosynthetic gene cluster, in conferring immunity to the antibiotic inNonomuraeasp. ATCC 39727. Taking advantage of the tools developed recently to genetically manipulate this uncommon actinomycete, we variedvanYngene dosage and expressedvanHatAatXatfrom the teicoplanin producerActinoplanes teichomyceticusinNonomuraeasp. ATCC 39727. Knocking outvanYn, complementing avanYnmutant, or duplicatingvanYnhad no effect on growth but influenced antibiotic resistance and, in the cases of complementation and duplication, antibiotic production.Nonomuraeasp. ATCC 39727 was found to be resistant to penicillins, but its glycopeptide resistance was diminished in the presence of penicillin G, which inhibits VanYnactivity. The heterologous expression ofvanHatAatXatincreased A40926 resistance inNonomuraeasp. ATCC 39727 but did not increase antibiotic production, indicating that the level of antibiotic production is not directly determined by the level of resistance. ThevanYn-based self-resistance inNonomuraeasp. ATCC 39727 resembles the glycopeptide resistance mechanism described recently in mutants ofEnterococcus faeciumselectedin vitrofor high-level resistance to glycopeptides and penicillins.


2008 ◽  
Vol 74 (9) ◽  
pp. 2834-2840 ◽  
Author(s):  
Guojun Wang ◽  
Takeshi Hosaka ◽  
Kozo Ochi

ABSTRACT We recently described a new method to activate antibiotic production in bacteria by introducing a mutation conferring resistance to a drug such as streptomycin, rifampin, paromomycin, or gentamicin. This method, however, enhanced antibiotic production by only up to an order of magnitude. Working with Streptomyces coelicolor A3(2), we established a method for the dramatic activation of antibiotic production by the sequential introduction of multiple drug resistance mutations. Septuple and octuple mutants, C7 and C8, thus obtained by screening for resistance to seven or eight drugs, produced huge amounts (1.63 g/liter) of the polyketide antibiotic actinorhodin, 180-fold higher than the level produced by the wild type. This dramatic overproduction was due to the acquisition of mutant ribosomes, with aberrant protein and ppGpp synthesis activity, as demonstrated by in vitro protein synthesis assays and by the abolition of antibiotic overproduction with relA disruption. This new approach, called “ribosome engineering,” requires less time, cost, and labor than other methods and may be widely utilized for bacterial strain improvement.


2013 ◽  
Vol 79 (20) ◽  
pp. 6447-6451 ◽  
Author(s):  
Jung-Hoon Lee ◽  
Marcha L. Gatewood ◽  
George H. Jones

ABSTRACTUsing insertional mutagenesis, we have disrupted the RNase III gene,rnc, of the actinomycin-producing streptomycete,Streptomyces antibioticus. Disruption was verified by Southern blotting. The resulting strain grows more vigorously than its parent on actinomycin production medium but produces significantly lower levels of actinomycin. Complementation of therncdisruption with the wild-typerncgene fromS. antibioticusrestored actinomycin production to nearly wild-type levels. Western blotting experiments demonstrated that the disruptant did not produce full-length or truncated forms of RNase III. Thus, as is the case inStreptomyces coelicolor, RNase III is required for antibiotic production inS. antibioticus. No differences in the chemical half-lives of bulk mRNA were observed in a comparison of theS. antibioticus rncmutant and its parental strain.


Sign in / Sign up

Export Citation Format

Share Document