scholarly journals Causal Relationship between Microbial Ecology Dynamics and Proteolysis during Manufacture and Ripening of Protected Designation of Origin (PDO) Cheese Canestrato Pugliese

2014 ◽  
Vol 80 (14) ◽  
pp. 4085-4094 ◽  
Author(s):  
Ilaria De Pasquale ◽  
Maria Calasso ◽  
Leonardo Mancini ◽  
Danilo Ercolini ◽  
Antonietta La Storia ◽  
...  

ABSTRACTPyrosequencing of the 16S rRNA gene, community-level physiological profiles determined by the use of Biolog EcoPlates, and proteolysis analyses were used to characterize Canestrato Pugliese Protected Designation of Origin (PDO) cheese. The number of presumptive mesophilic lactococci in raw ewes' milk was higher than that of presumptive mesophilic lactobacilli. The numbers of these microbial groups increased during ripening, showing temporal and numerical differences. Urea-PAGE showed limited primary proteolysis, whereas the analysis of the pH 4.6-soluble fraction of the cheese revealed that secondary proteolysis increased mainly from 45 to 75 days of ripening. This agreed with the concentration of free amino acids. Raw ewes' milk was contaminated by several bacterial phyla:Proteobacteria(68%; mainlyPseudomonas),Firmicutes(30%; mainlyCarnobacteriumandLactococcus),Bacteroidetes(0.05%), andActinobacteria(0.02%). Almost the same microbial composition persisted in the curd after molding. From day 1 of ripening onwards, the phylumFirmicutesdominated.Lactococcusdominated throughout ripening, and most of theLactobacillusspecies appeared only at 7 or 15 days. At 90 days,Lactococcus(87.2%),Lactobacillus(4.8%; mainlyLactobacillus plantarumandLactobacillus sakei), andLeuconostoc(3.9%) dominated. The relative utilization of carbon sources by the bacterial community reflected the succession. This study identified strategic phases that characterized the manufacture and ripening of Canestrato Pugliese cheese and established a causal relationship between mesophilic lactobacilli and proteolysis.

2012 ◽  
Vol 78 (6) ◽  
pp. 1890-1898 ◽  
Author(s):  
Ángel Alegría ◽  
Pawel Szczesny ◽  
Baltasar Mayo ◽  
Jacek Bardowski ◽  
Magdalena Kowalczyk

ABSTRACTOscypek is a traditional Polish scalded-smoked cheese, with a protected-designation-of-origin (PDO) status, manufactured from raw sheep's milk without starter cultures in the Tatra Mountains region of Poland. This study was undertaken in order to gain insight into the microbiota that develops and evolves during the manufacture and ripening stages of Oscypek. To this end, we made use of both culturing and the culture-independent methods of PCR followed by denaturing gradient gel electrophoresis (PCR-DGGE) and pyrosequencing of 16S rRNA gene amplicons. The culture-dependent technique and PCR-DGGE fingerprinting detected the predominant microorganisms in traditional Oscypek, whereas the next-generation sequencing technique (454 pyrosequencing) revealed greater bacterial diversity. Besides members of the most abundant bacterial genera in dairy products, e.g.,Lactococcus,Lactobacillus,Leuconostoc,Streptococcus, andEnterococcus, identified by all three methods, other, subdominant bacteria belonging to the familiesBifidobacteriaceaeandMoraxellaceae(mostlyEnhydrobacter), as well as various minor bacteria, were identified by pyrosequencing. The presence of bifidobacterial sequences in a cheese system is reported for the first time. In addition to bacteria, a great diversity of yeast species was demonstrated in Oscypek by the PCR-DGGE method. Culturing methods enabled the determination of a number of viable microorganisms from different microbial groups and their isolation for potential future applications in specific cheese starter cultures.


2014 ◽  
Vol 64 (Pt_3) ◽  
pp. 781-786 ◽  
Author(s):  
Maximo Sánchez ◽  
Martha-Helena Ramírez-Bahena ◽  
Alvaro Peix ◽  
María J. Lorite ◽  
Juan Sanjuán ◽  
...  

Strain S658T was isolated from a Lotus corniculatus nodule in a soil sample obtained in Uruguay. Phylogenetic analysis of the 16S rRNA gene and atpD gene showed that this strain clustered within the genus Phyllobacterium . The closest related species was, in both cases, Phyllobacterium trifolii PETP02T with 99.8 % sequence similarity in the 16S rRNA gene and 96.1 % in the atpD gene. The 16S rRNA gene contains an insert at the beginning of the sequence that has no similarities with other inserts present in the same gene in described rhizobial species. Ubiquinone Q-10 was the only quinone detected. Strain S658T differed from its closest relatives through its growth in diverse culture conditions and in the assimilation of several carbon sources. It was not able to reproduce nodules in Lotus corniculatus. The results of DNA–DNA hybridization, phenotypic tests and fatty acid analyses confirmed that this strain should be classified as a representative of a novel species of the genus Phyllobacterium , for which the name Phyllobacterium loti sp. nov. is proposed. The type strain is S658T( = LMG 27289T = CECT 8230T).


2021 ◽  
Author(s):  
Maria Luisa Tello ◽  
Rebeca Lavega ◽  
Margarita Pérez ◽  
Antonio J. Pérez ◽  
Michael Thon ◽  
...  

Abstract The cultivation of edible mushroom is an emerging sector with a potential yet to be discovered. Unlike plants, it is a less developed agriculture where many studies are lacking to optimize the cultivation. Mushrooms are a source of resources still to be revealed, which have applications not only in food, but in many other sectors such as health, industry and biotechnology. Mushroom cultivation consists of the development of selective substrates through composting where the mushroom grows via solid fermentation process. In case of Agaricus bisporus, the compost fully colonized by mycelium hardly produces mushrooms and it is necessary to apply a casing layer with certain physical, chemical and biological characteristics to shift from the vegetative mycelium to the reproductive one, where the native microbiota plays crucial roles. Currently, the industry faces a challenge to substitute the actual peat based casing materials due to the limited natural resources and the impact on the peatlands where peat is extracted.In this work we have employed high-throughput techniques by next generation sequencing to screen the microbial structure of casing soil employed in mushroom cultivation while sequencing V3-V4 of the 16S rRNA gene for bacteria and the ITS2 region of rRNA for fungi in an Illumina MiSeq. In addition, the microbiome dynamics and evolution (bacterial and fungal communities) in peat based casing along the process of incubation of Agaricus bisporus have been studied, while comparing the effect of fungicidal treatment (Chlorothalonil and Metrafenone). Statistically significant changes in populations of bacteria and fungi were observed. Microbial composition differed significantly based on incubation day, changing radically from the original communities to a specific microbial composition adapted to enhance the A. bisporus mycelium growth. Chlorothalonil treatment seems to delay casing colonization by A. bisporus. Proteobacteria and Bacteroidota appeared as the most dominant bacterial phyla. We observed a great change in the structure of the bacteria populations between day 0 and the following days. Fungi populations changed more gradually, A. bisporus displacing the rest of the species as the cultivation cycle progresses. A better understanding of the microbial communities in the casing will hopefully allow us to increase the biological efficiency during production as well as possibly help us to have a clearer view of the microbial community-pathogen relationships as they are directly related to disease development.


2011 ◽  
Vol 78 (2) ◽  
pp. 363-370 ◽  
Author(s):  
Lior Guttman ◽  
Jaap van Rijn

ABSTRACTUsing a relatively simple enrichment technique, geosmin and 2-methylisoborneol (MIB)-biodegrading bacteria were isolated from a digestion basin in an aquaculture unit. Comparison of 16S rRNA gene sequences affiliated one of the three isolates with the Gram-positive genusRhodococcus, while the other two isolates were found to be closely related to the Gram-negative familyComamonadaceae(VariovoraxandComamonas). Growth rates and geosmin and MIB removal rates by the isolates were determined under aerated and nonaerated conditions in mineral medium containing either of the two compounds as the sole carbon and energy source. All isolates exhibited their fastest growth under aerobic conditions, with generation times ranging from 3.1 to 5.7 h, compared to generation times of up to 19.1 h in the nonaerated flasks. Incubation of the isolates with additional carbon sources caused a significant increase in their growth rates, while removal rates of geosmin and MIB were significantly lower than those for incubation with only geosmin or MIB. By fluorescencein situhybridization, members of the generaRhodococcusandComamonaswere detected in geosmin- and MIB-enriched sludge from the digestion basin.


2013 ◽  
Vol 63 (Pt_12) ◽  
pp. 4675-4682 ◽  
Author(s):  
Jessica K. Cole ◽  
Brandon A. Gieler ◽  
Devon L. Heisler ◽  
Maryknoll M. Palisoc ◽  
Amanda J. Williams ◽  
...  

Several closely related, thermophilic and cellulolytic bacterial strains, designated JKG1T, JKG2, JKG3, JKG4 and JKG5, were isolated from a cellulolytic enrichment (corn stover) incubated in the water column of Great Boiling Spring, NV. Strain JKG1T had cells of diameter 0.7–0.9 µm and length ~2.0 µm that formed non-branched, multicellular filaments reaching >300 µm. Spores were not formed and dense liquid cultures were red. The temperature range for growth was 45–65 °C, with an optimum of 55 °C. The pH range for growth was pH 5.6–9.0, with an optimum of pH 7.5. JKG1T grew as an aerobic heterotroph, utilizing glucose, sucrose, xylose, arabinose, cellobiose, CM-cellulose, filter paper, microcrystalline cellulose, xylan, starch, Casamino acids, tryptone, peptone, yeast extract, acetate, citrate, lactate, pyruvate and glycerol as sole carbon sources, and was not observed to photosynthesize. The cells stained Gram-negative. Phylogenetic analysis using 16S rRNA gene sequences placed the new isolates in the class Chloroflexia , but distant from other cultivated members, with the highest sequence identity of 82.5 % to Roseiflexus castenholzii . The major quinone was menaquinone-9; no ubiquinones were detected. The major cellular fatty acids (>5 %) were C18 : 0, anteiso-C17 : 0, iso-C18 : 0, iso-C17 : 0, C16 : 0, iso-C16 : 0 and C17 : 0. The peptidoglycan amino acids were alanine, ornithine, glutamic acid, serine and asparagine. Whole-cell sugars included mannose, rhamnose, glucose, galactose, ribose, arabinose and xylose. Morphological, phylogenetic and chemotaxonomic results suggest that JKG1T is representative of a new lineage within the class Chloroflexia , which we propose to designate Kallotenue papyrolyticum gen. nov., sp. nov., Kallotenuaceae fam. nov., Kallotenuales ord. nov. The type strain of Kallotenue papyrolyticum gen. nov., sp. nov. is JKG1T ( = DSM 26889T = JCM 19132T).


mSphere ◽  
2019 ◽  
Vol 4 (2) ◽  
Author(s):  
Anna M. Seekatz ◽  
Matthew K. Schnizlein ◽  
Mark J. Koenigsknecht ◽  
Jason R. Baker ◽  
William L. Hasler ◽  
...  

ABSTRACTAlthough the microbiota in the proximal gastrointestinal (GI) tract have been implicated in health and disease, much about these microbes remains understudied compared to those in the distal GI tract. This study characterized the microbiota across multiple proximal GI sites over time in healthy individuals. As part of a study of the pharmacokinetics of oral mesalamine administration, healthy, fasted volunteers (n = 8; 10 observation periods total) were orally intubated with a four-lumen catheter with multiple aspiration ports. Samples were taken from stomach, duodenal, and multiple jejunal sites, sampling hourly (≤7 h) to measure mesalamine (administered att = 0), pH, and 16S rRNA gene-based composition. We observed a predominance ofFirmicutesacross proximal GI sites, with significant variation compared to stool. The microbiota was more similar within individuals over time than between subjects, with the fecal microbiota being unique from that of the small intestine. The stomach and duodenal microbiota displayed highest intraindividual variability compared to jejunal sites, which were more stable across time. We observed significant correlations in the duodenal microbial composition with changes in pH; linear mixed models identified positive correlations with multipleStreptococcusoperational taxonomic units (OTUs) and negative correlations with multiplePrevotellaandPasteurellaceaeOTUs. Few OTUs correlated with mesalamine concentration. The stomach and duodenal microbiota exhibited greater compositional dynamics than the jejunum. Short-term fluctuations in the duodenal microbiota were correlated with pH. Given the unique characteristics and dynamics of the proximal GI tract microbiota, it is important to consider these local environments in health and disease states.IMPORTANCEThe gut microbiota are linked to a variety of gastrointestinal diseases, including inflammatory bowel disease. Despite this importance, microbiota dynamics in the upper gastrointestinal tract are understudied. Our article seeks to understand what factors impact microbiota dynamics in the healthy human upper gut. We found that the upper gastrointestinal tract contains consistently prevalent bacterial OTUs that dominate the overall community. Microbiota variability is highest in the stomach and duodenum and correlates with pH.


2013 ◽  
Vol 63 (Pt_12) ◽  
pp. 4421-4427 ◽  
Author(s):  
Viktoria Shcherbakova ◽  
Nataliya Chuvilskaya ◽  
Elizaveta Rivkina ◽  
Nikita Demidov ◽  
Victoria Uchaeva ◽  
...  

A facultatively anaerobic nitrogen-fixing bacterium, strain C7T, was isolated from a permafrost cryopeg on the Yamal Peninsula, Russia. Comparative analysis of 16S rRNA gene sequences revealed that this bacterium was closely related to Celerinatantimonas diazotrophica S-G2-2T with a similarity of 95.5 %. Strain C7T differed from Celerinatantimonas diazotrophica in its ability to hydrolyse gelatin and inability to use d-mannose, melibiose, l-rhamnose, myo-inositol, lactose, lactulose, d-mannitol, trehalose, dl-lactate, glycogen or l-proline as sole carbon sources. In addition, strain C7T grew over a temperature range of 0–34 °C with optimum growth at 18–22 °C. The whole-cell fatty acid profile included C16 : 0, C16 : 1ω7, C18 : 1ω7, C17 cyclo and summed feature 2 [comprising C12 : 0 aldehyde and/or unknown fatty acid 10.913 (MIDI designation) and/or iso-C16 : 1/C14 : 0 3-OH]. The DNA G+C content was 44.7 mol%. Strain C7T is thus considered to represent a novel species, for which the name Celerinatantimonas yamalensis sp. nov. is proposed. The type strain is C7T ( = VKM B-2511T = DSM 21888T).


2018 ◽  
Vol 84 (22) ◽  
Author(s):  
Jonah E. Einson ◽  
Asha Rani ◽  
Xiaomeng You ◽  
Allison A. Rodriguez ◽  
Clifton L. Randell ◽  
...  

ABSTRACTFermented vegetables are highly popular internationally in part due to their enhanced nutritional properties, cultural history, and desirable sensorial properties. In some instances, fermented foods provide a rich source of the beneficial microbial communities that could promote gastrointestinal health. The indigenous microbiota that colonize fermentation facilities may impact food quality, food safety, and spoilage risks and maintain the nutritive value of the product. Here, microbiomes within sauerkraut production facilities were profiled to characterize variance across surfaces and to determine the sources of these bacteria. Accordingly, we used high-throughput sequencing of the 16S rRNA gene in combination with whole-genome shotgun analyses to explore biogeographical patterns of microbial diversity and assembly within the production facility. Our results indicate that raw cabbage and vegetable handling surfaces exhibit more similar microbiomes relative to the fermentation room, processing area, and dry storage surfaces. We identified biomarker bacterial phyla and families that are likely to originate from the raw cabbage and vegetable handling surfaces. Raw cabbage was identified as the main source of bacteria to seed the facility, with human handling contributing a minor source of inoculation.LeuconostocandLactobacillaceaedominated all surfaces where spontaneous fermentation occurs, as these taxa are associated with the process. Wall, floor, ceiling, and barrel surfaces host unique microbial signatures. This study demonstrates that diverse bacterial communities are widely distributed within the production facility and that these communities assemble nonrandomly, depending on the surface type.IMPORTANCEFermented vegetables play a major role in global food systems and are widely consumed by various global cultures. In this study, we investigated an industrial facility that produces spontaneous fermented sauerkraut without the aid of starter cultures. This provides a unique system to explore and track the origins of an “in-house” microbiome in an industrial environment. Raw vegetables and the surfaces on which they are handled were identified as the likely source of bacterial communities rather than human contamination. As fermented vegetables increase in popularity on a global scale, understanding their production environment may help maintain quality and safety goals.


2020 ◽  
Vol 7 ◽  
Author(s):  
Bishnu Adhikari ◽  
Guillermo Tellez-Isaias ◽  
Tieshan Jiang ◽  
Brian Wooming ◽  
Young Min Kwon

The importance of microbiota in the health and diseases of farm animals has been well-documented for diverse animal species. However, studies on microbiotas in turkey and turkey farms are relatively limited as compared to other farm animal species. In this study, we performed a comprehensive survey of the litter microbiotas in 5 commercial turkey farms in the Northwest Arkansas (H, M, V, K, and R farms) including one farm with positive incidence of cellulitis (R farm). Altogether 246 boot swabs were used for 16S rRNA gene profiling of bacterial communities. At phylum level, 11 major bacterial phyla (≥0.01%) were recovered. At genus level, 13 major bacterial genera were found whose relative abundance were ≥2%. The microbial composition at both phylum and genus levels as well as their diversities varied across different farms, which were further affected by different flocks within the same farms and the ages of turkeys. Generally, the Firmicutes were higher in the flocks of younger birds, while the Actinobacteria and Bacteroidetes were higher in the flocks of the older birds. The Proteobacteria were highly enriched (47.97%) in K farm housing 56-day-old turkeys (K-56), but Bacteroidetes were found the highest in the flock C of M farm housing 63-day-old turkeys (M-C-63; 22.38%), followed by K-84 group (17.26%). Four core bacterial genera (Staphylococcus, Brevibacterium, Brachybacterium, and Lactobacillus) were identified in all samples except for those from R farm. In contrast, 24 core bacterial genera were found based in all cellulitis-associated samples (R farm), including Corynebacterium, an unknown genus of family Bacillaceae, Clostridium sensu stricto 1 (>97% similarity with C. septicum), and Ignatzschineria among others, suggesting their possible roles in etiopathogenesis of cellulitis in turkeys. Overall results of this study may provide valuable foundation for future studies focusing on the role of microbiota in the health and diseases of turkeys.


mBio ◽  
2013 ◽  
Vol 4 (1) ◽  
Author(s):  
Caitriona M. Guinane ◽  
Amany Tadrous ◽  
Fiona Fouhy ◽  
C. Anthony Ryan ◽  
Eugene M. Dempsey ◽  
...  

ABSTRACT The human appendix has historically been considered a vestige of evolutionary development with an unknown function. While limited data are available on the microbial composition of the appendix, it has been postulated that this organ could serve as a microbial reservoir for repopulating the gastrointestinal tract in times of necessity. We aimed to explore the microbial composition of the human appendix, using high-throughput sequencing of the 16S rRNA gene V4 region. Seven patients, 5 to 25 years of age, presenting with symptoms of acute appendicitis were included in this study. Results showed considerable diversity and interindividual variability among the microbial composition of the appendix samples. In general, however, Firmicutes was the dominant phylum, with the majority of additional sequences being assigned at various levels to Proteobacteria, Bacteroidetes, Actinobacteria, and Fusobacteria. Despite the large diversity in the microbiota found within the appendix, however, a few major families and genera were found to comprise the majority of the sequences present. Interestingly, also, certain taxa not generally associated with the human intestine, including the oral pathogens Gemella, Parvimonas, and Fusobacterium, were identified among the appendix samples. The prevalence of genera such as Fusobacterium could also be linked to the severity of inflammation of the organ. We conclude that the human appendix contains a robust and varied microbiota distinct from the microbiotas in other niches within the human microbiome. The microbial composition of the human appendix is subject to extreme variability and comprises a diversity of biota that may play an important, as-yet-unknown role in human health. IMPORTANCE There are currently limited data available on the microbial composition of the human appendix. It has been suggested, however, that it may serve as a “safe house” for commensal bacteria that can reinoculate the gut at need. The present study is the first comprehensive view of the microbial composition of the appendix as determined by high-throughput sequencing. We have determined that the human appendix contains a wealth of microbes, including members of 15 phyla. Important information regarding the associated bacterial diversity of the appendix which will help determine the role, if any, the appendix microbiota has in human health is presented.


Sign in / Sign up

Export Citation Format

Share Document