scholarly journals Biodiversity in Oscypek, a Traditional Polish Cheese, Determined by Culture-Dependent and -Independent Approaches

2012 ◽  
Vol 78 (6) ◽  
pp. 1890-1898 ◽  
Author(s):  
Ángel Alegría ◽  
Pawel Szczesny ◽  
Baltasar Mayo ◽  
Jacek Bardowski ◽  
Magdalena Kowalczyk

ABSTRACTOscypek is a traditional Polish scalded-smoked cheese, with a protected-designation-of-origin (PDO) status, manufactured from raw sheep's milk without starter cultures in the Tatra Mountains region of Poland. This study was undertaken in order to gain insight into the microbiota that develops and evolves during the manufacture and ripening stages of Oscypek. To this end, we made use of both culturing and the culture-independent methods of PCR followed by denaturing gradient gel electrophoresis (PCR-DGGE) and pyrosequencing of 16S rRNA gene amplicons. The culture-dependent technique and PCR-DGGE fingerprinting detected the predominant microorganisms in traditional Oscypek, whereas the next-generation sequencing technique (454 pyrosequencing) revealed greater bacterial diversity. Besides members of the most abundant bacterial genera in dairy products, e.g.,Lactococcus,Lactobacillus,Leuconostoc,Streptococcus, andEnterococcus, identified by all three methods, other, subdominant bacteria belonging to the familiesBifidobacteriaceaeandMoraxellaceae(mostlyEnhydrobacter), as well as various minor bacteria, were identified by pyrosequencing. The presence of bifidobacterial sequences in a cheese system is reported for the first time. In addition to bacteria, a great diversity of yeast species was demonstrated in Oscypek by the PCR-DGGE method. Culturing methods enabled the determination of a number of viable microorganisms from different microbial groups and their isolation for potential future applications in specific cheese starter cultures.

2008 ◽  
Vol 74 (14) ◽  
pp. 4539-4542 ◽  
Author(s):  
Rafael C. R. Martinez ◽  
Sílvio A. Franceschini ◽  
Maristela C. Patta ◽  
Silvana M. Quintana ◽  
Álvaro C. Nunes ◽  
...  

ABSTRACT Culture-dependent PCR-amplified rRNA gene restriction analysis and culture-independent (PCR-denaturing gradient gel electrophoresis) methodologies were used to examine vaginal lactobacilli from Brazilian women who were healthy or had been diagnosed with vulvovaginal candidiasis (VVC) or bacterial vaginosis. Only Lactobacillus crispatus was detected accordingly by both methods, and H2O2-producing lactobacilli were not associated with protection against VVC.


2011 ◽  
Vol 77 (13) ◽  
pp. 4527-4538 ◽  
Author(s):  
Judith White ◽  
Jack Gilbert ◽  
Graham Hill ◽  
Edward Hill ◽  
Susan M. Huse ◽  
...  

ABSTRACTBacterial diversity in contaminated fuels has not been systematically investigated using cultivation-independent methods. The fuel industry relies on phenotypic cultivation-based contaminant identification, which may lack accuracy and neglect difficult-to-culture taxa. By the use of industry practice aerobic cultivation, 16S rRNA gene sequencing, and strain genotyping, a collection of 152 unique contaminant isolates from 54 fuel samples was assembled, and a dominance ofPseudomonas(21%),Burkholderia(7%), andBacillus(7%) was demonstrated. Denaturing gradient gel electrophoresis (DGGE) of 15 samples revealedProteobacteriaandFirmicutesto be the most abundant phyla. When 16S rRNA V6 gene pyrosequencing of four selected fuel samples (indicated by “JW”) was performed,Betaproteobacteria(42.8%) andGammaproteobacteria(30.6%) formed the largest proportion of reads; the most abundant genera wereMarinobacter(15.4%; JW57),Achromobacter(41.6%; JW63),Burkholderia(80.7%; JW76), andHalomonas(66.2%; JW78), all of which were also observed by DGGE. However, theClostridia(38.5%) andDeltaproteobacteria(11.1%) identified by pyrosequencing in sample JW57 were not observed by DGGE or aerobic culture. Genotyping revealed three instances where identical strains were found: (i) aPseudomonassp. strain recovered from 2 different diesel fuel tanks at a single industrial site; (ii) aMangroveibactersp. strain isolated from 3 biodiesel tanks at a single refinery site; and (iii) aBurkholderiavietnamiensisstrain present in two unrelated automotive diesel samples. Overall, aerobic cultivation of fuel contaminants recovered isolates broadly representative of the phyla and classes present but lacked accuracy by overrepresenting members of certain groups such asPseudomonas.


2006 ◽  
Vol 72 (10) ◽  
pp. 6452-6460 ◽  
Author(s):  
Paul J. Hunter ◽  
Geoff M. Petch ◽  
Leo A. Calvo-Bado ◽  
Tim R. Pettitt ◽  
Nick R. Parsons ◽  
...  

ABSTRACT The microbiological characteristics associated with disease-suppressive peats are unclear. We used a bioassay for Pythium sylvaticum-induced damping-off of cress seedlings to identify conducive and suppressive peats. Microbial activity in unconditioned peats was negatively correlated with the counts of P. sylvaticum at the end of the bioassay. Denaturing gradient gel electrophoresis (DGGE) profiling and clone library analyses of small-subunit rRNA gene sequences from two suppressive and two conducive peats differed in the bacterial profiles generated and the diversity of sequence populations. There were also significant differences between bacterial sequence populations from suppressive and conducive peats. The frequencies of a number of microbial groups, including the Rhizobium-Agrobacterium group (specifically sequences similar to those for the genera Ochrobactrum and Zoogloea) and the Acidobacteria, increased specifically in the suppressive peats, although no single bacterial group was associated with disease suppression. Fungal DGGE profiles varied little over the course of the bioassay; however, two bands associated specifically with suppressive samples were detected. Sequences from these bands corresponded to Basidiomycete yeast genera. Although the DGGE profiles were similar, fungal sequence diversity also increased during the bioassay. Sequences highly similar to those of Cryptococcus increased in relative abundance during the bioassay, particularly in the suppressive samples. This study highlights the importance of using complementary approaches to molecular profiling of complex populations and provides the first report that basidiomycetous yeasts may be associated with the suppression of Pythium-induced diseases in peats.


2013 ◽  
Vol 79 (24) ◽  
pp. 7827-7836 ◽  
Author(s):  
Danilo Ercolini ◽  
Erica Pontonio ◽  
Francesca De Filippis ◽  
Fabio Minervini ◽  
Antonietta La Storia ◽  
...  

ABSTRACTThe bacterial ecology during rye and wheat sourdough preparation was described by 16S rRNA gene pyrosequencing. Viable plate counts of presumptive lactic acid bacteria, the ratio between lactic acid bacteria and yeasts, the rate of acidification, a permutation analysis based on biochemical and microbial features, the number of operational taxonomic units (OTUs), and diversity indices all together demonstrated the maturity of the sourdoughs during 5 to 7 days of propagation. Flours were mainly contaminated by metabolically active genera (Acinetobacter,Pantoea,Pseudomonas,Comamonas,Enterobacter,Erwinia, andSphingomonas) belonging to the phylumProteobacteriaorBacteroidetes(genusChryseobacterium). Their relative abundances varied with the flour. Soon after 1 day of propagation, this population was almost completely inhibited except for theEnterobacteriaceae. Although members of the phylumFirmicuteswere present at very low or intermediate relative abundances in the flours, they became dominant soon after 1 day of propagation. Lactic acid bacteria were almost exclusively representative of theFirmicutesby this time.Weissellaspp. were already dominant in rye flour and stably persisted, though they were later flanked by theLactobacillus sakeigroup. There was a succession of species during 10 days of propagation of wheat sourdoughs. The fluctuation between dominating and subdominating populations ofL. sakeigroup,Leuconostocspp.,Weissellaspp., andLactococcus lactiswas demonstrated. Other subdominant species such asLactobacillus plantarumwere detectable throughout propagation. As shown by PCR-denaturing gradient gel electrophoresis (PCR-DGGE) analysis,Saccharomyces cerevisiaedominated throughout the sourdough propagation. Notwithstanding variations due to environmental and technology determinants, the results of this study represent a clear example of how the microbial ecology evolves during sourdough preparation.


2012 ◽  
Vol 79 (1) ◽  
pp. 263-272 ◽  
Author(s):  
Anna M. Kielak ◽  
Mariana Silvia Cretoiu ◽  
Alexander V. Semenov ◽  
Søren J. Sørensen ◽  
Jan Dirk van Elsas

ABSTRACTChitin amendment is a promising soil management strategy that may enhance the suppressiveness of soil toward plant pathogens. However, we understand very little of the effects of added chitin, including the putative successions that take place in the degradative process. We performed an experiment in moderately acid soil in which the level of chitin, next to the pH, was altered. Examination of chitinase activities revealed fast responses to the added crude chitin, with peaks of enzymatic activity occurring on day 7. PCR-denaturing gradient gel electrophoresis (DGGE)-based analyses of 16S rRNA andchiAgenes showed structural changes of the phylogenetically and functionally based bacterial communities following chitin addition and pH alteration. Pyrosequencing analysis indicated (i) that the diversity ofchiAgene types in soil is enormous and (i) that differentchiAgene types are selected by the addition of chitin at different prevailing soil pH values. Interestingly, a major role of Gram-negative bacteria versus a minor one ofActinobacteriain the immediate response to the added chitin (based on 16S rRNA gene abundance andchiAgene types) was indicated. The results of this study enhance our understanding of the response of the soil bacterial communities to chitin and are of use for both the understanding of soil suppressiveness and the possible mining of soil for novel enzymes.


2011 ◽  
Vol 77 (16) ◽  
pp. 5770-5781 ◽  
Author(s):  
Yanhong Chen ◽  
Gregory B. Penner ◽  
Meiju Li ◽  
Masahito Oba ◽  
Le Luo Guan

ABSTRACTOur understanding of the ruminal epithelial tissue-associated bacterial (defined as epimural bacteria in this study) community is limited. In this study, we aimed to determine whether diet influences the diversity of the epimural bacterial community in the bovine rumen. Twenty-four beef heifers were randomly assigned to either a rapid grain adaptation (RGA) treatment (n= 18) in which the heifers were allowed to adapt from a diet containing 97% hay to a diet containing 8% hay over 29 days or to the control group (n= 6), which was fed 97% hay. Rumen papillae were collected when the heifers were fed 97%, 25%, and 8% hay diets. PCR-denaturing gradient gel electrophoresis (DGGE) and quantitative real-time PCR analysis were used to characterize rumen epimural bacterial diversity and to estimate the total epimural bacterial population (copy numbers of the 16S rRNA gene). The epimural bacterial diversity from RGA heifers changed (P= 0.01) in response to the rapid dietary transition, whereas it was not affected in control heifers. A total of 88 PCR-DGGE bands were detected, and 44 were identified from phyla includingFirmicutes,Bacteroidetes, andProteobacteria. The bacteriaTreponemasp.,Ruminobactersp., andLachnospiraceaesp. were detected only when heifers were fed 25% and 8% hay diets, suggesting the presence of these bacteria is the result of adaptation to the high-grain diets. In addition, the total estimated population of rumen epimural bacteria was positively correlated with molar proportions of acetate, isobutyrate, and isovalerate, suggesting that they may play a role in volatile fatty acid metabolism in the rumen.


2003 ◽  
Vol 69 (6) ◽  
pp. 3607-3616 ◽  
Author(s):  
Veljo Kisand ◽  
Johan Wikner

ABSTRACT Three different methods for analyzing natural microbial community diversity were combined to maximize an estimate of the richness of bacterioplankton catabolizing riverine dissolved organic matter (RDOM). We also evaluated the ability of culture-dependent quantitative DNA-DNA hybridization, a 16S rRNA gene clone library, and denaturing gradient gel electrophoresis (DGGE) to detect bacterial taxa in the same sample. Forty-two different cultivatable strains were isolated from rich and poor solid media. In addition, 50 unique clones were obtained by cloning of the bacterial 16S rDNA gene amplified by PCR from the community DNA into an Escherichia coli vector. Twenty-three unique bands were sequenced from 12 DGGE profiles, excluding a composite fuzzy band of the Cytophaga-Flavobacterium group. The different methods gave similar distributions of taxa at the genus level and higher. However, the match at the species level among the methods was poor, and only one species was identified by all three methods. Consequently, all three methods identified unique subsets of bacterial species, amounting to a total richness of 97 operational taxonomic units in the experimental system. The confidence in the results was, however, dependent on the current precision of the phylogenetic determination and definition of the species. Bacterial consumers of RDOM in the studied estuary were primarily both cultivatable and uncultivable taxa of the Cytophaga-Flavobacterium group, a concordant result among the methods applied. Culture-independent methods also suggested several not-yet-cultivated β-proteobacteria to be RDOM consumers.


2012 ◽  
Vol 535-537 ◽  
pp. 1046-1053 ◽  
Author(s):  
Wei Qing Lan ◽  
Jing Xie

The methods of culture-dependent and denaturing gradient gel electrophoresis (DGGE) based on the sequence of 16S rRNA V3 region gene were described to comparatively characterize the microbial population and community structure of cutlassfish (Trichiurus haumela) under the cold storage. The results showed that 13 kinds of bacteria were identified by the traditional culture-dependent methods, the dominant bacteria belonged to Shewanella putrefaciens and Pseudomonas fluorescens. To determine the community profiles of the samples on variable V3 region, the bacteria of 16S rRNA gene were amplified by PCR and 11 distinct PCR products were separated by DGGE fingerprinting technology. From the sequence analysis, Psychrobacter sp. was found to be the predominant bacteria in the initial stage of the storage. The proportion of Shewanella sp., Pseudomonas sp. increased gradually with the extension of storage time, and they took the place of Psychrobacter sp. to be the dominant bacteria. Thereinto, both Pseudomonas fluorescens and Vibrio sp. took high proportions in the process of storage due to the deterioration of cutlassfish (Trichiurus haumela).


2003 ◽  
Vol 69 (1) ◽  
pp. 220-226 ◽  
Author(s):  
R. Temmerman ◽  
I. Scheirlinck ◽  
G. Huys ◽  
J. Swings

ABSTRACT In order to obtain functional and safe probiotic products for human consumption, fast and reliable quality control of these products is crucial. Currently, analysis of most probiotics is still based on culture-dependent methods involving the use of specific isolation media and identification of a limited number of isolates, which makes this approach relatively insensitive, laborious, and time-consuming. In this study, a collection of 10 probiotic products, including four dairy products, one fruit drink, and five freeze-dried products, were subjected to microbial analysis by using a culture-independent approach, and the results were compared with the results of a conventional culture-dependent analysis. The culture-independent approach involved extraction of total bacterial DNA directly from the product, PCR amplification of the V3 region of the 16S ribosomal DNA, and separation of the amplicons on a denaturing gradient gel. Digital capturing and processing of denaturing gradient gel electrophoresis (DGGE) band patterns allowed direct identification of the amplicons at the species level. This whole culture-independent approach can be performed in less than 30 h. Compared with culture-dependent analysis, the DGGE approach was found to have a much higher sensitivity for detection of microbial strains in probiotic products in a fast, reliable, and reproducible manner. Unfortunately, as reported in previous studies in which the culture-dependent approach was used, a rather high percentage of probiotic products suffered from incorrect labeling and yielded low bacterial counts, which may decrease their probiotic potential.


2012 ◽  
Vol 78 (8) ◽  
pp. 2904-2913 ◽  
Author(s):  
Lídia J. R. Lima ◽  
Vera van der Velpen ◽  
Judith Wolkers-Rooijackers ◽  
Henri J. Kamphuis ◽  
Marcel H. Zwietering ◽  
...  

ABSTRACTWe sampled a cocoa powder production line to investigate the impact of processing on the microbial community size and diversity at different stages. Classical microbiological methods were combined with 16S rRNA gene PCR-denaturing gradient gel electrophoresis, coupled with clone library construction, to analyze the samples. Aerobic thermoresistant spores (ThrS) (100°C; 10 min) were also isolated and characterized (identity, genetic diversity, and spore heat resistance), in view of their relevance to the quality of downstream heat-treated cocoa-flavored drinks. In the nibs (broken, shelled cocoa beans), average levels of total aerobic microorganisms (TAM) (4.4 to 5.6 log CFU/g) and aerobic total spores (TS) (80°C; 10 min; 4.3 to 5.5 log CFU/g) were significantly reduced (P< 0.05) as a result of alkalizing, while fungi (4.2 to 4.4 log CFU/g) andEnterobacteriaceae(1.7 to 2.8 log CFU/g) were inactivated to levels below the detection limit, remaining undetectable throughout processing. Roasting further decreased the levels of TAM and TS, but they increased slightly during subsequent processing. Molecular characterization of bacterial communities based on enriched cocoa samples revealed a predominance of members of theBacillaceae,Pseudomonadaceae, andEnterococcaceae. Eleven species of ThrS were found, butBacillus licheniformisand theBacillus subtiliscomplex were prominent and revealed great genetic heterogeneity. We concluded that the microbiota of cocoa powder resulted from microorganisms that could have been initially present in the nibs, as well as microorganisms that originated during processing.B. subtiliscomplex members, particularlyB. subtilissubsp.subtilis, formed the most heat-resistant spores. Their occurrence in cocoa powder needs to be considered to ensure the stability of derived products, such as ultrahigh-temperature-treated chocolate drinks.


Sign in / Sign up

Export Citation Format

Share Document