scholarly journals Prevalence and Genetic Characterization of Shiga Toxin-Producing Escherichia coli Isolates from Slaughtered Animals in Bangladesh

2008 ◽  
Vol 74 (17) ◽  
pp. 5414-5421 ◽  
Author(s):  
Mohammad A. Islam ◽  
Abdus S. Mondol ◽  
Enne de Boer ◽  
Rijkelt R. Beumer ◽  
Marcel H. Zwietering ◽  
...  

ABSTRACT To determine the prevalence of Shiga toxin (Stx)-producing Escherichia coli (STEC) in slaughter animals in Dhaka, Bangladesh, we collected rectal contents immediately after animals were slaughtered. Of the samples collected from buffalo (n = 174), cows (n = 139), and goats (n = 110), 82.2%, 72.7%, and 11.8% tested positive for stx 1 and/or stx 2, respectively. STEC could be isolated from 37.9%, 20.1%, and 10.0% of the buffalo, cows, and goats, respectively. STEC O157 samples were isolated from 14.4% of the buffalo, 7.2% of the cows, and 9.1% of the goats. More than 93% (n = 42) of the STEC O157 isolates were positive for the stx 2, eae, katP, etpD, and enterohemorrhagic E. coli hly (hly EHEC) virulence genes. STEC O157 isolates were characterized by seven recognized phage types, of which types 14 (24.4%) and 31 (24.4%) were predominant. Subtyping of the 45 STEC O157 isolates by pulsed-field gel electrophoresis showed 37 distinct restriction patterns, suggesting a heterogeneous clonal diversity. In addition to STEC O157, 71 STEC non-O157 strains were isolated from 60 stx-positive samples from 23.6% of the buffalo, 12.9% of the cows, and 0.9% of the goats. The STEC non-O157 isolates belonged to 36 different O groups and 52 O:H serotypes. Unlike STEC O157, most of the STEC non-O157 isolates (78.9%) were positive for stx 1. Only 7.0% (n = 5) of the isolates were positive for hly EHEC, and none was positive for eae, katP, and etpD. None of the isolates was positive for the iha, toxB, and efa1 putative adhesion genes. However, 35.2% (n = 25), 11.3% (n = 8), 12.7% (n = 9), and 12.7% (n = 9) of the isolates were positive for the lpf O113, saa, lpfA O157/01-141, and lpfA O157/OI-154 genes, respectively. The results of this study provide the first evidence that slaughtered animals like buffalo, cows, and goats in Bangladesh are reservoirs for STEC, including the potentially virulent STEC strain O157.

2020 ◽  
Vol 83 (11) ◽  
pp. 1909-1917
Author(s):  
SAIDA ESSENDOUBI ◽  
XIANQIN YANG ◽  
ROBIN KING ◽  
JULIA KEENLISIDE ◽  
JAVIER BAHAMON ◽  
...  

ABSTRACT The objective of this study was to determine the prevalence of Shiga toxin–producing Escherichia coli (STEC) O157:H7 in colon contents and on carcasses from pigs slaughtered at provincially licensed abattoirs (PLAs) in Alberta, Canada. In 2017, carcass sponge samples and colon content samples were collected from 504 healthy market hogs at 39 PLAs and analyzed for E. coli O157:H7. Carcass samples were also analyzed for E. coli and aerobic colony count (ACC). Nine (1.8%) of 504 carcass samples were confirmed positive for E. coli O157:H7. Seven (1.4%) of 504 colon content samples were confirmed positive for E. coli O157:H7. These positives were found in 5 (12.8%) of 39 PLAs from hogs originating from eight farms. The E. coli O157:H7 isolates recovered from the positive samples (n = 1 isolate per sample) were clonal, as determined by pulsed-field gel electrophoresis. Six E. coli O157:H7 isolates obtained over 8 months from one PLA that only processed hogs and sourced hogs from one farm had indistinguishable pulsed-field gel electrophoresis patterns. All 16 E. coli O157:H7 isolates harbored eae and ehxA and were of stx2a subtype, suggesting that swine can carry E. coli O157:H7 of importance to human health. All carcass sponge swabs (100%) were positive for ACC. E. coli was present in 72% of carcass swabs. Carcasses from PLAs slaughtering both beef and hogs had a numerically higher ACC mean value but not statistically different compared with the carcasses from PLAs slaughtering only swine (2,799 and 610 CFU/cm2, respectively). E. coli showed a similar trend with a mean value of 0.88 CFU/cm2 in PLAs slaughtering both species and 0.26 CFU/cm2 in PLAs slaughtering only swine (P ≤ 0.05). This study provides evidence that healthy market hogs from different producers and farms in Alberta can carry E. coli O157:H7, and some strains of the organism may be able to establish persistence on some swine farms. HIGHLIGHTS


2011 ◽  
Vol 78 (5) ◽  
pp. 1615-1618 ◽  
Author(s):  
Lydia V. Rump ◽  
Sonya Bodeis-Jones ◽  
Jason Abbott ◽  
Shaohua Zhao ◽  
Julie Kase ◽  
...  

ABSTRACTEscherichia coliO104 isolates collected from different sources in the United States were examined for virulence genes typical of enterohemorrhagicE. coliand those identified in the O104:H4 isolate associated with the 2011 German outbreak. The unexpected presence of virulence markers in these isolates highlights the importance of screening unusual and potentially pathogenic Shiga toxin-producingE. coliserotypes.


2012 ◽  
Vol 58 (7) ◽  
pp. 923-927 ◽  
Author(s):  
Yan D. Niu ◽  
Kim Stanford ◽  
Hans-W. Ackermann ◽  
Tim A. McAllister

Bacteriophages are associated with reduced fecal shedding of Shiga-toxin-producing Escherichia coli O157:H7 (STEC O157:H7) in cattle. Four phages exhibiting activity against 12 of 14 STEC O157:H7 strains, representing 11 common phage types, were isolated. Phages did not lyse non-O157 E. coli, with 11 of the 12 STEC strains exhibiting extreme susceptibility (average multiplicity of infection (MOI) = 0.0003−0.0007). All phages had icosahedral heads with tapered, noncontractile tails, a morphology indicative of T1-like Siphoviridae. Genome size of all phages was ∼44 kb, but EcoRІ or HindIII digestion profiles differed among phages. Based on restriction enzyme digestion profiles, phages AHP24, AHS24, and AHP42 were more related (66.7%−82.4%) to each other than to AKS96, while AHP24 and AHS24, isolated from the same feedlot pen, exhibited the highest identity (88.9%−92.3%). Phages AHP24 and AHS24 exhibited the broadest host range and strongest lytic activity against STEC O157:H7, making them strong candidates for biocontrol of this bacterium in cattle.


2014 ◽  
Vol 143 (1) ◽  
pp. 94-103 ◽  
Author(s):  
M. Z. ISLAM ◽  
J. P. CHRISTENSEN ◽  
P. K. BISWAS

SUMMARYWe investigated faecal samples collected from the rectum of 518 cattle on 371 randomly selected smallholdings in Bangladesh for the presence of sorbitol non-fermenting (SN-F) shiga toxin-producingEscherichia coli(STEC). The SN-F isolates were tested for the presence ofrfbO157,stx1, stx2, eaeandhlyAgenes by polymerase chain reaction (PCR). Seven SN-F isolates lacking these genes were profiled by pulsed-field gel electrophoresis (PFGE) to verify their clonality. SN-FE. coliwas identified in 44 [8·5%, 95% confidence interval (CI) 6·4–11·2] samples; of these, 28 (5·4%, 95% CI 3·8–7·7) had shiga toxin-producing strains, although only two carried therfbO157 gene. Thirteen isolates carried thehlyAgene while 18 harboured theeaegene. Based on PFGE, six pulsotypes were observed among the seven isolates that had no virulence genes. To the best of our knowledge this is the first report on shiga toxin-producingE. colifrom direct rectal faecal samples of cattle on smallholdings.


2021 ◽  
Vol 9 (11) ◽  
pp. 2374
Author(s):  
Xiangning Bai ◽  
Flemming Scheutz ◽  
Henrik Mellström Dahlgren ◽  
Ingela Hedenström ◽  
Cecilia Jernberg

Shiga toxin (Stx) is the key virulence factor in the Shiga Toxin-Producing Escherichia coli (STEC), which can cause diarrhea and hemorrhagic colitis with potential life-threatening complications. There are two major types of Stx: Stx1 and Stx2. Several Stx1/Stx2 subtypes have been identified in E. coli, varying in sequences, toxicity and host specificity. Here, we report a novel Stx2 subtype (designated Stx2m) from three clinical E. coli strains isolated from diarrheal patients and asymptomatic carriers in Sweden and Denmark. The Stx2m toxin was functional and exhibited cytotoxicity in vitro. The two Swedish Stx2m-producing strains belonged to the same serotype O148:H39 and Multilocus Sequencing Typing (MLST) Sequence Type (ST) 5825, while the Danish strain belonged to the O96:H19 serotype and ST99 type. Whole-genome sequencing (WGS) data analysis revealed that the three Stx2m-producing strains harbored additional virulence genes and the macrolide resistance gene mdf (A). Our findings expand the pool of Stx2 subtypes and highlight the clinical significance of emerging STEC variants. Given the clinical relevance of the Stx2m-producing strains, we propose to include Stx2m in epidemiological surveillance of STEC infections and clinical diagnosis.


2007 ◽  
Vol 74 (4) ◽  
pp. 1268-1272 ◽  
Author(s):  
G. A. Uhlich ◽  
J. R. Sinclair ◽  
N. G. Warren ◽  
W. A. Chmielecki ◽  
P. Fratamico

ABSTRACT Shiga toxin-producing Escherichia coli isolates from two 2006 outbreaks were compared to other O157:H7 isolates for virulence genotype, biofilm formation, and stress responses. Spinach- and lettuce-related-outbreak strains had similar pulsed-field gel electrophoresis patterns, and all carried both stx 2 and stx 2c variant genes. Cooperative biofilm formation involving an E. coli O157:H7 strain and a non-O157:H7 strain was also demonstrated.


2016 ◽  
Vol 82 (14) ◽  
pp. 4309-4319 ◽  
Author(s):  
Susan R. Leonard ◽  
Mark K. Mammel ◽  
David A. Rasko ◽  
David W. Lacher

ABSTRACTHybrid isolates of Shiga toxin-producingEscherichia coli(STEC) and enterotoxigenicE. coli(ETEC) encoding heat-stable enterotoxin (ST) are being reported with increasing frequency from a variety of sources. However, information regarding the plasmids that these strains harbor is scarce. In this study, we sequence and characterize a plasmid, p7v, from the STEC/ETEC hybrid strain 7v. Whole-genome phylogenetic analyses of STEC/ETEC hybrid strains and prototypeE. coliisolates of other pathotypes placed 7v in theEscherichiasp. cryptic lineage 1 (CL1) clade. The complete plasmid, p7v, was determined to be 229,275 bp and encodes putative virulence factors that are typically carried on STEC plasmids as well as those often carried on ETEC plasmids, indicating that the hybrid nature of the strain extends beyond merely encoding the two toxins. Plasmid p7v carries two copies ofstawith identical sequences, which were discovered to be divergent from thestasequences found in the prototype human ETEC strains. Using a nomenclature scheme based on a phylogeny constructed fromstaandstbsequences, thestaencoded on p7v is designated STa4.In silicoanalysis determined that p7v also encodes the K88 fimbria, a colonization factor usually associated with porcine ETEC plasmids. The p7v sequence and the presence of plasmid-encoded virulence factors are compared to those of other STEC/ETEC CL1 hybrid genomes and reveal gene acquisition/loss at the strain level. In addition, the interrogation of 24 STEC/ETEC hybrid genomes for identification of plasmid replicons, colonization factors, Stx and ST subtypes, and other plasmid-encoded virulence genes highlights the diversity of these hybrid strains.IMPORTANCEHybrid Shiga toxin-producingEscherichia coli/enterotoxigenicEscherichia coli(STEC/ETEC) strains, which have been isolated from environmental, animal, and human clinical samples, may represent an emerging threat as food-borne pathogens. Characterization of these strains is important for assessing virulence potential, aiding in the development of pathogen detection methods, and understanding how the hybrid strains evolve to potentially have a greater impact on public health. This study represents, to our knowledge, both the first characterization of a closed plasmid sequence from a STEC/ETEC hybrid strain and the most comprehensive phylogenetic analysis of available STEC/ETEC hybrid genomes to date. The results demonstrate how the mobility of plasmid-associated virulence genes has resulted in the creation of a diverse plasmid repertoire within the STEC/ETEC hybrid strains.


2002 ◽  
Vol 128 (3) ◽  
pp. 357-362 ◽  
Author(s):  
N. FEGAN ◽  
P. DESMARCHELIER

There is very little human disease associated with enterohaemorrhagic Escherichia coli O157 in Australia even though these organisms are present in the animal population. A group of Australian isolates of E. coli O157:H7 and O157:H- from human and animal sources were tested for the presence of virulence markers and compared by XbaI DNA macrorestriction analysis using pulsed-field gel electrophoresis (PFGE). Each of 102 isolates tested contained the gene eae which encodes the E. coli attaching and effacing factor and all but one carried the enterohaemolysin gene, ehxA, found on the EHEC plasmid. The most common Shiga toxin gene carried was stx2c, either alone (16%) or in combination with stx1 (74%) or stx2 (3%). PFGE grouped the isolates based on H serotype and some clusters were source specific. Australian E. coli O157:H7 and H- isolates from human, animal and meat sources carry all the virulence markers associated with EHEC disease in humans therefore other factors must be responsible for the low rates of human infection in Australia.


2020 ◽  
Vol 152 ◽  
pp. 15667-15675
Author(s):  
Chakirath Folakè Arikè Salifou ◽  
Cyrille Boko ◽  
Isidore Houaga ◽  
Raoul Agossa ◽  
Isabelle Ogbankotan ◽  
...  

Objectives: The study aimed to search for E. coli O157 and non-O157 in milk, meat and faeces of cattle, sheep and pigs slaughtered in Cotonou. Methodology and Results: One hundred and Seventy-Five (175) samples including 25 meat, 25 faeces per species and 25 milk from cattle were analysed for E. coli O157; O26 and O111 and the virulence genes were identified by PCR. The SAS software (1998) and the bilateral Z test were used to calculate and compare the identification frequencies. E. coli O157 was identified in 4% of cattle faeces, 4% of sheep faeces, and 20% of beef and, in 20% of milk samples. E. coli O26 was identified in 12% of cattle faeces and, in 8% of beef samples. E. coli O111 was identified at frequencies of 8%, and 12% in faeces of sheep and pigs, respectively. The eae gene was detected in 4% of beef, ovine meat, milk, pig faeces and in sheep faeces. stx1 was detected in 8% of milk, and in 4% of bovine and sheep faeces. The strains possessing the gene were all of E. coli O157 with the exception of one from pig faeces identified as O111. Conclusions and application of findings: The presence of these serogroups of E. coli with virulence genes poses a real food safety problem in Benin. This study findings must be taken into account for risk assessment and management related to the consumption of food of animal origin. Keywords: Benin, E. coli O157, O26, O111, faeces, meat, milk


Sign in / Sign up

Export Citation Format

Share Document