scholarly journals Sequence Diversity of Bacillus thuringiensis Flagellin (H Antigen) Protein at the Intra-H Serotype Level

2008 ◽  
Vol 74 (17) ◽  
pp. 5524-5532 ◽  
Author(s):  
Dong Xu ◽  
Jean-Charles Côté

ABSTRACT In Bacillus thuringiensis, the hag gene encodes flagellin, the protein responsible for eliciting the immunological reaction in H serotyping. Specific flagellin amino acid sequences have been correlated to specific B. thuringiensis H serotypes, H1 to H67. Ten H serotypes, however, contain three or more antigenic subfactors, labeled a, b, c, d, or e, and have been subdivided into 23 serovars. In the present study, we set out to analyze the sequence diversity of flagellins among serovars from the same H serotypes. We studied the hag genes in 39 B. thuringiensis strains representing the 23 serovars from the 10 H serotypes mentioned above. A serovar and a biovar from an 11th H serotype were also included. The hag genes were amplified and cloned and their nucleotide sequences were determined and translated into amino acid sequences, or the sequences were retrieved directly from GenBank when available. Strains of the H3 serotype contained two or three copies of the fla gene, an ortholog of the hag gene. Strains of the H6 serotype contained three copies. Strains of all other H serotypes each contained a single copy of the hag gene. Alignments of amino acid sequences from all copies in all strains of the H3 serotype revealed short signature sequences, GGAG and SGG, GPDPDDAVKNLT, and DITTTK, that appeared to be specific to the H3c, H3d, and H3e antigenic subfactors, respectively. Similar short signature sequences, GDIT, AFIK, TSAGKA, and SAPSKG, were revealed for H8b, H8c, H20b, and H20c, respectively. Amino acid sequences in the flagellin central variable region were highly conserved among serovars of the H3, H5, H11, and H20 serotypes and much more divergent among serovars of the H4, H10, H18, H24, and H28 serotypes. Two bootstrapped neighbor-joining trees were respectively generated from the alignments of the amino acid sequences translated from all copies of the hag genes in the B. thuringiensis strains of the H3 and H6 serotypes. Sequence identities and relationships were revealed. A third bootstrapped neighbor-joining tree was generated, this one from the alignment of the flagellin amino acid sequences from all the B. thuringiensis strains in the study. Eight clusters, I to VIII, were revealed. Although most clusters contained strains and serovars from the same H serotype, clusters VII and VIII contained serovars from different H serotypes.

2006 ◽  
Vol 72 (7) ◽  
pp. 4653-4662 ◽  
Author(s):  
Dong Xu ◽  
Jean-Charles Côté

ABSTRACT We set out to analyze the sequence diversity of the Bacillus thuringiensis flagellin (H antigen [Hag]) protein and compare it with H serotype diversity. Some other Bacillus cereus sensu lato species and strains were added for comparison. The internal sequences of the flagellin (hag) alleles from 80 Bacillus thuringiensis strains and 16 strains from the B. cereus sensu lato group were amplified and cloned, and their nucleotide sequences were determined and translated into amino acids. The flagellin allele nucleotide sequences for 10 additional strains were retrieved from GenBank for a total of 106 Bacillus species and strains used in this study. These included 82 B. thuringiensis strains from 67 H serotypes, 5 B. cereus strains, 3 Bacillus anthracis strains, 3 Bacillus mycoides strains, 11 Bacillus weihenstephanensis strains, 1 Bacillus halodurans strain, and 1 Bacillus subtilis strain. The first 111 and the last 66 amino acids were conserved. They were referred to as the C1 and C2 regions, respectively. The central region, however, was highly variable and is referred to as the V region. Two bootstrapped neighbor-joining trees were generated: a first one from the alignment of the translated amino acid sequences of the amplified internal sequences of the hag alleles and a second one from the alignment of the V region amino acid sequences, respectively. Of the eight clusters revealed in the tree inferred from the entire C1-V-C2 region amino acid sequences, seven were present in corresponding clusters in the tree inferred from the V region amino acid sequences. With regard to B. thuringiensis, in most cases, different serovars had different flagellin amino acid sequences, as might have been expected. Surprisingly, however, some different B. thuringiensis serovars shared identical flagellin amino acid sequences. Likewise, serovars from the same H serotypes were most often found clustered together, with exceptions. Indeed, some serovars from the same H serotype carried flagellins with sufficiently different amino acid sequences as to be located on distant clusters. Species-wise, B. halodurans, B. subtilis, and B. anthracis formed specific branches, whereas the other four species, all in the B. cereus sensu lato group, B. mycoides, B. weihenstephanensis, B. cereus, and B. thuringiensis, did not form four specific clusters as might have been expected. Rather, strains from any of these four species were placed side by side with strains from the other species. In the B. cereus sensu lato group, B. anthracis excepted, the distribution of strains was not species specific.


1983 ◽  
Vol 158 (5) ◽  
pp. 1615-1634 ◽  
Author(s):  
C A Slaughter ◽  
J D Capra

VH region amino acid sequences are described for five A/J anti-p-azophenylarsonate (anti-Ars) hybridoma antibodies for which the VL region sequences have previously been determined, thus completing the V domain sequences of these molecules. These antibodies all belong to the family designated Ars-A which bears the major anti-arsonate cross-reactive idiotype (CRI) of the A strain mouse. However, they differ in the degree to which they express the CRI in standard competition radioimmunoassays. Although the sequences are closely related, all are different from each other. Replacements are distributed throughout the VH region and occur in positions of the chain encoded by all three gene segments, VH, DH, and JH. It is likely that somatic diversification processes play a dominant role in producing the sequence variability in each of these segments. The number of differences from the sequence encoded by the germline is smallest for antibodies that express the CRI most strongly, suggesting that somatic diversification is responsible for loss of the CRI in members of the Ars-A antibody family. There is an unusual degree of clustering of differences in both CDR2 and CDR3 and many of the substitutions are located in "hot spots" of variation. The large number of differences between the chains prohibits the unambiguous identification of positions at which alterations play a major role in reducing the expression of the CRI. However, the data suggest that the loss of the CRI is associated with a definable repertoire of somatic changes at a restricted number of highly variable sites.


FEBS Letters ◽  
1986 ◽  
Vol 198 (2) ◽  
pp. 283-286 ◽  
Author(s):  
G.G. Chestukhina ◽  
S.A. Tyurin ◽  
A.L. Osterman ◽  
O.P. Khodova ◽  
V.M. Stepanov

1980 ◽  
Vol 10 (4) ◽  
pp. 264-267 ◽  
Author(s):  
Hans P. Kocher ◽  
Claudia Berek ◽  
Max H. Schreier ◽  
Humberto Cosenza ◽  
Jean-Claude Jaton

1970 ◽  
Vol 117 (4) ◽  
pp. 641-660 ◽  
Author(s):  
E. M. Press ◽  
N. M. Hogg

The amino acid sequences of the Fd fragments of two human pathological immunoglobulins of the immunoglobulin G1 class are reported. Comparison of the two sequences shows that the heavy-chain variable regions are similar in length to those of the light chains. The existence of heavy chain variable region subgroups is also deduced, from a comparison of these two sequences with those of another γ 1 chain, Eu, a μ chain, Ou, and the partial sequence of a fourth γ 1 chain, Ste. Carbohydrate has been found to be linked to an aspartic acid residue in the variable region of one of the γ 1 chains, Cor.


2004 ◽  
Vol 70 (9) ◽  
pp. 5357-5365 ◽  
Author(s):  
Kathleen M. Schleinitz ◽  
Sabine Kleinsteuber ◽  
Tatiana Vallaeys ◽  
Wolfgang Babel

ABSTRACT Two novel genes, rdpA and sdpA, encoding the enantiospecific α-ketoglutarate dependent dioxygenases catalyzing R,S-dichlorprop cleavage in Delftia acidovorans MC1 were identified. Significant similarities to other known genes were not detected, but their deduced amino acid sequences were similar to those of other α-ketoglutarate dioxygenases. RdpA showed 35% identity with TauD of Pseudomonas aeruginosa, and SdpA showed 37% identity with TfdA of Ralstonia eutropha JMP134. The functionally important amino acid sequence motif HX(D/E)X23-26(T/S)X114-183HX10-13R/K, which is highly conserved in group II α-ketoglutarate-dependent dioxygenases, was present in both dichlorprop-cleaving enzymes. Transposon mutagenesis of rdpA inactivated R-dichlorprop cleavage, indicating that it was a single-copy gene. Both rdpA and sdpA were located on the plasmid pMC1 that also carries the lower pathway genes. Sequencing of a 25.8-kb fragment showed that the dioxygenase genes were separated by a 13.6-kb region mainly comprising a Tn501-like transposon. Furthermore, two copies of a sequence similar to IS91-like elements were identified. Hybridization studies comparing the wild-type plasmid and that of the mutant unable to cleave dichlorprop showed that rdpA and sdpA were deleted, whereas the lower pathway genes were unaffected, and that deletion may be caused by genetic rearrangements of the IS91-like elements. Two other dichlorprop-degrading bacterial strains, Rhodoferax sp. strain P230 and Sphingobium herbicidovorans MH, were shown to carry rdpA genes of high similarity to rdpA from strain MC1, but sdpA was not detected. This suggested that rdpA gene products are involved in the degradation of R-dichlorprop in these strains.


2012 ◽  
Vol 33 (1) ◽  
Author(s):  
Yuki Fujii ◽  
Shiho Tanaka ◽  
Manami Otsuki ◽  
Yasushi Hoshino ◽  
Chinatsu Morimoto ◽  
...  

Characterizing the binding mechanism of Bt (Bacillus thuringiensis) Cry toxin to the cadherin receptor is indispensable to understanding the specific insecticidal activity of this toxin. To this end, we constructed 30 loop mutants by randomly inserting four serial amino acids covering all four receptor binding loops (loops α8, 1, 2 and 3) and analysed their binding affinities for Bombyx mori cadherin receptors via Biacore. High binding affinities were confirmed for all 30 mutants containing loop sequences that differed from those of wild-type. Insecticidal activities were confirmed in at least one mutant from loops 1, 2 and 3, suggesting that there is no critical amino acid sequence for the binding of the four loops to BtR175. When two mutations at different loops were integrated into one molecule, no reduction in binding affinity was observed compared with wild-type sequences. Based on these results, we discussed the binding mechanism of Cry toxin to cadherin protein.


2002 ◽  
Vol 184 (20) ◽  
pp. 5554-5562 ◽  
Author(s):  
Sinda Fedhila ◽  
Tarek Msadek ◽  
Patricia Nel ◽  
Didier Lereclus

ABSTRACT ClpP and ClpC are subunits of the Clp ATP-dependent protease, which is ubiquitous among prokaryotic and eukaryotic organisms. The role of these proteins in stress tolerance, stationary-phase adaptive responses, and virulence in many bacterial species has been demonstrated. Based on the amino acid sequences of the Bacillus subtilis clpC and clpP genes, we identified one clpC gene and two clpP genes (designated clpP1 and clpP2) in Bacillus thuringiensis. Predicted proteins ClpP1 and ClpP2 have approximately 88 and 67% amino acid sequence identity with ClpP of B. subtilis, respectively. Inactivation of clpC in B. thuringiensis impaired sporulation efficiency. The clpP1 and clpP2 mutants were both slightly susceptible to salt stress, whereas disruption of clpP2 negatively affected sporulation and abolished motility. Virulence of the clp mutants was assessed by injecting bacteria into the hemocoel of Bombyx mori larvae. The clpP1 mutant displayed attenuated virulence, which appeared to be related to its inability to grow at low temperature (25°C), suggesting an essential role for ClpP1 in tolerance of low temperature. Microscopic examination of clpP1 mutant cells grown at 25°C showed altered bacterial division, with cells remaining attached after septum formation. Analysis of lacZ transcriptional fusions showed that clpP1 was expressed at 25 and 37°C during the entire growth cycle. In contrast, clpP2 was expressed at 37°C but not at 25°C, suggesting that ClpP2 cannot compensate for the absence of ClpP1 in the clpP1 mutant cells at low temperature. Our study demonstrates that ClpP1 and ClpP2 control distinct cellular regulatory pathways in B. thuringiensis.


2000 ◽  
Vol 13 (4) ◽  
pp. 359-365 ◽  
Author(s):  
F. I. García-Maceira ◽  
Antonio Di Pietro ◽  
M. Isabel G. Roncero

Fusarium oxysporum f. sp. lycopersici, the causal agent of tomato vascular wilt, produces an array of pectinolytic enzymes, including at least two exo-α1,4-polygalac-turonases (exoPGs). A gene encoding an exoPG, pgx4, was isolated with degenerate polymerase chain reaction primers derived from amino acid sequences conserved in two fungal exoPGs. pgx4 encodes a 454 amino acid polypeptide with nine potential N-glycosylation sites and a putative 21 amino acid N-terminal signal peptide. The deduced mature protein has a calculated molecular mass of 47.9 kDa, a pI of 8.0, and 51 and 49% identity with the exoPGs of Cochliobolus carbonum and Aspergillus tubingensis, respectively. The gene is present in a single copy in different formae speciales of F. oxysporum. Expression of pgx4 was detected during in vitro growth on pectin, polygalacturonic acid, and tomato vascular tissue and in roots and stems of tomato plants infected by F. oxysporum f. sp. lycopersici. Two mutants of F. oxy-sporum f. sp. lycopersici with a copy of pgx4 inactivated by gene replacement were as virulent on tomato plants as the wild-type strain.


Sign in / Sign up

Export Citation Format

Share Document