scholarly journals Influence of Native Microbiota on Survival of Ralstonia solanacearum Phylotype II in River Water Microcosms

2007 ◽  
Vol 73 (22) ◽  
pp. 7210-7217 ◽  
Author(s):  
Belén Álvarez ◽  
María M. López ◽  
Elena G. Biosca

ABSTRACT Ralstonia solanacearum phylotype II biovar 2 causes bacterial wilt in solanaceous hosts, producing severe economic losses worldwide. Waterways can be major dissemination routes of this pathogen, which is able to survive for long periods in sterilized water. However, little is known about its survival in natural water when other microorganisms, such as bacteriophages, other bacteria, and protozoa, are present. This study looks into the fate of a Spanish strain of R. solanacearum inoculated in water microcosms from a Spanish river, containing different microbiota fractions, at 24°C and 14°C, for a month. At both temperatures, R. solanacearum densities remained constant at the initial levels in control microcosms of sterile river water while, by contrast, declines in the populations of the introduced strain were observed in the nonsterile microcosms. These decreases were less marked at 14°C. Lytic bacteriophages present in this river water were involved in the declines of the pathogen populations, but indigenous protozoa and bacteria also contributed to the reduced persistence in water. R. solanacearum variants displaying resistance to phage infection were observed, but only in microcosms without protozoa and native bacteria. In water microcosms, the temperature of 14°C was more favorable for the survival of this pathogen than 24°C, since biotic interactions were slower at the lower temperature. Similar trends were observed in microcosms inoculated with a Dutch strain. This is the first study demonstrating the influence of different fractions of water microorganisms on the survival of R. solanacearum phylotype II released into river water microcosms.

2011 ◽  
Vol 101 (1) ◽  
pp. 154-165 ◽  
Author(s):  
A. Lebeau ◽  
M.-C. Daunay ◽  
A. Frary ◽  
A. Palloix ◽  
J.-F. Wang ◽  
...  

Bacterial wilt, caused by strains belonging to the Ralstonia solanacearum species complex, inflicts severe economic losses in many crops worldwide. Host resistance remains the most effective control strategy against this disease. However, wilt resistance is often overcome due to the considerable variation among pathogen strains. To help breeders circumvent this problem, we assembled a worldwide collection of 30 accessions of tomato, eggplant and pepper (Core-TEP), most of which are commonly used as sources of resistance to R. solanacearum or for mapping quantitative trait loci. The Core-TEP lines were challenged with a core collection of 12 pathogen strains (Core-Rs2) representing the phylogenetic diversity of R. solanacearum. We observed six interaction phenotypes, from highly susceptible to highly resistant. Intermediate phenotypes resulted from the plants' ability to tolerate latent infections (i.e., bacterial colonization of vascular elements with limited or no wilting). The Core-Rs2 strains partitioned into three pathotypes on pepper accessions, five on tomato, and six on eggplant. A “pathoprofile” concept was developed to characterize the strain clusters, which displayed six virulence patterns on the whole set of Core-TEP host accessions. Neither pathotypes nor pathoprofiles were phylotype specific. Pathoprofiles with high aggressiveness were mainly found in strains from phylotypes I, IIB, and III. One pathoprofile included a strain that overcame almost all resistance sources.


2009 ◽  
Vol 22 (7) ◽  
pp. 773-782 ◽  
Author(s):  
Zomary Flores-Cruz ◽  
Caitilyn Allen

Ralstonia solanacearum genes that are induced during tomato infection suggested that this pathogen encounters reactive oxygen species (ROS) during bacterial wilt pathogenesis. The genomes of R. solanacearum contain multiple redundant ROS-scavenging enzymes, indirect evidence that this pathogen experiences intense oxidative stress during its life cycle. Over 9% of the bacterium's plant-induced genes were also upregulated by hydrogen peroxide in culture, suggesting that oxidative stress may be linked to life in the plant host. Tomato leaves infected by R. solanacearum contained hydrogen peroxide, and concentrations of this ROS increased as pathogen populations increased. Mutagenesis of a plant-induced predicted peroxidase gene, bcp, resulted in an R. solanacearum strain with reduced ability to detoxify ROS in culture. The bcp mutant caused slightly delayed bacterial wilt disease onset in tomato. Moreover, its virulence was significantly reduced on tobacco plants engineered to overproduce hydrogen peroxide, demonstrating that Bcp is necessary for detoxification of plant-derived hydrogen peroxide and providing evidence that host ROS can limit the success of this pathogen. These results reveal that R. solanacearum is exposed to ROS during pathogenesis and that it has evolved a redundant and efficient oxidative stress response to adapt to the host environment and cause disease.


2001 ◽  
Vol 183 (12) ◽  
pp. 3597-3605 ◽  
Author(s):  
Julie Tans-Kersten ◽  
Huayu Huang ◽  
Caitilyn Allen

ABSTRACT Ralstonia solanacearum, a widely distributed and economically important plant pathogen, invades the roots of diverse plant hosts from the soil and aggressively colonizes the xylem vessels, causing a lethal wilting known as bacterial wilt disease. By examining bacteria from the xylem vessels of infected plants, we found thatR. solanacearum is essentially nonmotile in planta, although it can be highly motile in culture. To determine the role of pathogen motility in this disease, we cloned, characterized, and mutated two genes in the R. solanacearum flagellar biosynthetic pathway. The genes for flagellin, the subunit of the flagellar filament (fliC), and for the flagellar motor switch protein (fliM) were isolated based on their resemblance to these proteins in other bacteria. As is typical for flagellins, the predicted FliC protein had well-conserved N- and C-terminal regions, separated by a divergent central domain. The predicted R. solanacearum FliM closely resembled motor switch proteins from other proteobacteria. Chromosomal mutants lackingfliC or fliM were created by replacing the genes with marked interrupted constructs. Since fliM is embedded in the fliLMNOPQR operon, the aphAcassette was used to make a nonpolar fliM mutation. Both mutants were completely nonmotile on soft agar plates, in minimal broth, and in tomato plants. The fliC mutant lacked flagella altogether; moreover, sheared-cell protein preparations from the fliC mutant lacked a 30-kDa band corresponding to flagellin. The fliM mutant was usually aflagellate, but about 10% of cells had abnormal truncated flagella. In a biologically representative soil-soak inoculation virulence assay, both nonmotile mutants were significantly reduced in the ability to cause disease on tomato plants. However, the fliC mutant had wild-type virulence when it was inoculated directly onto cut tomato petioles, an inoculation method that did not require bacteria to enter the intact host from the soil. These results suggest that swimming motility makes its most important contribution to bacterial wilt virulence in the early stages of host plant invasion and colonization.


2017 ◽  
Vol 124 (5) ◽  
pp. 467-472 ◽  
Author(s):  
Kamal A. M. Abo-Elyousr ◽  
Mohamed E. A. Seleim ◽  
Rafeek M. El-Sharkawy ◽  
Hadel M. M. Khalil Bagy

2014 ◽  
Vol 8 (12) ◽  
pp. 1277-1281 ◽  
Author(s):  
Sagar Vinay ◽  
Singh Gurjar Malkhan ◽  
Arjunan Jeevalatha ◽  
R. Bakade Rahul ◽  
K. Chakrabarti S. ◽  
...  

Author(s):  
Narasimhamurthy Konappa ◽  
Soumya Krishnamurthy ◽  
Chandra Nayaka Siddaiah ◽  
Niranjana Siddapura Ramachandrappa ◽  
Srinivas Chowdappa

Plant Disease ◽  
2019 ◽  
Vol 103 (3) ◽  
pp. 578-578 ◽  
Author(s):  
R. Sikirou ◽  
M.-E. E. A. Dossoumou ◽  
B. Zocli ◽  
V. Afari-Sefa ◽  
J. Honfoga ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document