scholarly journals Relationship between the Presence of Bartonella Species and Bacterial Loads in Cats and Cat Fleas (Ctenocephalides felis) under Natural Conditions

2015 ◽  
Vol 81 (16) ◽  
pp. 5613-5621 ◽  
Author(s):  
Ricardo Gutiérrez ◽  
Yaarit Nachum-Biala ◽  
Shimon Harrus

ABSTRACTCats are considered the main reservoir of three zoonoticBartonellaspecies:Bartonella henselae,Bartonellaclarridgeiae, andBartonellakoehlerae. Cat fleas (Ctenocephalides felis) have been experimentally demonstrated to be a competent vector ofB. henselaeand have been proposed as the potential vector of the two otherBartonellaspecies. Previous studies have reported a lack of association between theBartonellaspecies infection status (infected or uninfected) and/or bacteremia levels of cats and the infection status of the fleas they host. Nevertheless, to date, no study has compared the quantitative distributions of these bacteria in both cats and their fleas under natural conditions. Thus, the present study explored these relationships by identifying and quantifying the differentBartonellaspecies in both cats and their fleas. Therefore, EDTA-blood samples and fleas collected from stray cats were screened forBartonellabacteria. Bacterial loads were quantified by high-resolution melt real-time quantitative PCR assays. The results indicated a moderate correlation between theBartonellabacterial loads in the cats and their fleas when both were infected with the sameBartonellaspecies. Moreover, a positive effect of the host infection status on theBartonellabacterial loads of the fleas was observed. Conversely, the cat bacterial loads were not affected by the infection status of their fleas. Our results suggest that theBartonellabacterial loads of fleas are positively affected by the presence of the bacteria in their feline host, probably by multiple acquisitions/accumulation and/or multiplication events.

2013 ◽  
Vol 79 (23) ◽  
pp. 7439-7444 ◽  
Author(s):  
Emilie Bouhsira ◽  
Michel Franc ◽  
Henri-Jean Boulouis ◽  
Philippe Jacquiet ◽  
Isabelle Raymond-Letron ◽  
...  

ABSTRACTBartonella henselae(Rhizobiales:Bartonellaceae) is a Gram-negative fastidious bacterium of veterinary and zoonotic importance. The cat fleaCtenocephalides felis(Siphonaptera: Pulicidae) is the main recognized vector ofB. henselae, and transmission among cats and humans occurs mainly through infected flea feces. The present study documents the use of a quantitative molecular approach to follow the daily kinetics ofB. henselaewithin the cat flea and its excreted feces after exposure to infected blood for 48 h in an artificial membrane system.B. henselaeDNA was detected in both fleas and feces for the entire life span of the fleas (i.e., 12 days) starting from 24 h after initiation of the blood meal.


2021 ◽  
Vol 9 (7) ◽  
pp. 1350
Author(s):  
Alex Mau ◽  
Ana Cláudia Calchi ◽  
Pedro Bittencourt ◽  
Maria Jose Navarrete-Talloni ◽  
Caroline Sauvé ◽  
...  

This study aimed to molecularly survey and evaluate the genetic diversity of Bartonella spp. in mongooses and their fleas from St. Kitts. Spleen (n = 54), blood (n = 71), and pooled flea samples, all identified as Ctenocephalides felis (n = 53), were submitted to TaqMan real-time quantitative PCR (qPCR) targeting Bartonella-nuoG fragment (84 bp). Positive samples underwent further conventional PCR assays targeting five loci (gltA, rpoB, fstZ, nuoG, and ITS), subsequent sequencing, and phylogenetic and haplotype analyses. The overall occurrence of Bartonella spp. in mongooses and fleas was 51.2% (64/125 [95% CI (42.1–60.2%)]) and 62.3% (33/53) [95% CI (47.9–75.2%)]), respectively. From samples sequenced across the five loci, 50.8% (33/65) were identified as Bartonella henselae, 26.2% (17/65) were 96.74–99.01% similar by BLAST analysis to an unidentified Bartonella sp. previously reported in Japanese badgers (Meles anakuma), and 23.1% (15/65) were co-infected with both species. Nucleotide polymorphism analysis showed low diversity amongst haplotypes but did concur with phylogenetic analysis, placing the unidentified species in a separate clade from B. henselae by multiple mutational events. Our data confirms that mongooses and Ctenocephalides felis fleas collected from them are not only potential reservoirs for B. henselae but also a novel Bartonella sp. which we propose be called ‘Candidatus Bartonella kittensis’.


2020 ◽  
Author(s):  
Timothy P. Driscoll ◽  
Victoria I. Verhoeve ◽  
Cassia Brockway ◽  
Darin L. Shrewsberry ◽  
Mariah L. Plumer ◽  
...  

AbstractWolbachiae are obligate intracellular bacteria that infect arthropods and certain nematodes. Usually maternally inherited, they may provision nutrients to (mutualism) or alter sexual biology of (reproductive parasitism) their invertebrate hosts. We report the assembly of closed genomes for two novel wolbachiae, wCfeT and wCfeJ, found co-infecting cat fleas (Ctenocephalides felis) of the Elward Laboratory colony (Soquel, CA). wCfeT is basal to nearly all described Wolbachia supergroups, while wCfeJ is related to supergroups C, D and F. Both genomes contain laterally transferred genes that inform on the evolution of Wolbachia host associations. wCfeT carries the Biotin synthesis Operon of Obligate intracellular Microbes (BOOM); our analyses reveal five independent acquisitions of BOOM across the Wolbachia tree, indicating parallel evolution towards mutualism. Alternately, wCfeJ harbors a toxin-antidote operon analogous to the wPip cinAB operon recently characterized as an inducer of cytoplasmic incompatibility (CI) in flies. wCfeJ cinB and immediate-5’ end genes are syntenic to large modular toxins encoded in CI-like operons of certain Wolbachia strains and Rickettsia species, signifying that CI toxins streamline by fission of larger toxins. Remarkably, the C. felis genome itself contains two CI-like antidote genes, divergent from wCfeJ cinA, revealing episodic reproductive parasitism in cat fleas and evidencing mobility of CI loci independent of WO-phage. Additional screening revealed predominant co-infection (wCfeT/wCfeJ) amongst C. felis colonies, though occasionally wCfeJ singly infects fleas in wild populations. Collectively, genomes of wCfeT, wCfeJ, and their cat flea host supply instances of lateral gene transfers that could drive transitions between parasitism and mutualism.ImportanceMany arthropod and certain nematode species are infected with wolbachiae which are intracellular bacteria well known for reproductive parasitism (RP). Like other RP strategies, Wolbachia-induced cytoplasmic incompatibility, CI, increases prevalence and frequency in host populations. Mutualism is another strategy employed by wolbachiae to maintain host infection, with some strains synthesizing and supplementing certain B vitamins (particularly biotin) to invertebrate hosts. Curiously, we discovered two novel Wolbachia strains that co-infect cat fleas (Ctenocephalides felis): wCfeT carries biotin synthesis genes, while wCfeJ carries a CI-inducing toxin-antidote operon. Our analyses of these genes highlight their mobility across the Wolbachia phylogeny and source to other intracellular bacteria. Remarkably, the C. felis genome also carries two CI-like antidote genes divergent from the wCfeJ antidote gene, indicating episodic RP in cat fleas. Collectively, wCfeT and wCfeJ inform on the rampant dissemination of diverse factors that mediate Wolbachia strategies for persisting in invertebrate host populations.


Pathogens ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 735
Author(s):  
João R. Mesquita ◽  
Ana C. Oliveira ◽  
Frederico Neves ◽  
Jose R. Mendoza ◽  
Maria F. Luz ◽  
...  

Free-roaming dogs and cats represent potential reservoirs for zoonotic vector-borne pathogens shedding to the human population. Given the health impact of these pathogens, we searched free-roaming dogs and cats included in an animal population control program from Luanda, Angola, for Bartonella and hemotropic mycoplasma infection. We report the detection of Bartonella henselae (2/66; 3%), Candidatus Mycoplasma haemominutum (5/66; 7.5%) and Mycoplasma haemofelis (1/66; 1.5%) in cats. One dog was found positive for Mycoplasma haemocanis (1/20; 5%). This is the first report of Bartonella henselae infections in stray cats and of hemotropic mycoplasmas in cats and dogs from Angola. Despite the relatively small sample size, our results sustain the hypothesis of uncontrolled circulation of these agents in highly mobile synanthropic animal populations of Luanda. Population and vector control could contribute to reducing the likelihood for animal-to-animal and animal-to-human transmission.


2016 ◽  
Vol 54 (11) ◽  
pp. 2798-2803 ◽  
Author(s):  
Elham Salehi ◽  
Mohammad T. Hedayati ◽  
Jan Zoll ◽  
Haleh Rafati ◽  
Maryam Ghasemi ◽  
...  

In a retrospective multicenter study, 102 formalin-fixed paraffin-embedded (FFPE) tissue specimens with histopathology results were tested. Two 4- to 5-μm FFPE tissue sections from each specimen were digested with proteinase K, followed by automated nucleic acid extraction. Multiple real-time quantitative PCR (qPCR) assays targeting the internal transcribed spacer 2 (ITS2) region of ribosomal DNA, using fluorescently labeled primers, was performed to identify clinically important genera and species of Aspergillus , Fusarium , Scedosporium , and the Mucormycetes . The molecular identification was correlated with results from histological examination. One of the main findings of our study was the high sensitivity of the automated DNA extraction method, which was estimated to be 94%. The qPCR procedure that was evaluated identified a range of fungal genera/species, including Aspergillus fumigatus , Aspergillus flavus , Aspergillus terreus , Aspergillus niger , Fusarium oxysporum , Fusarium solani , Scedosporium apiospermum , Rhizopus oryzae , Rhizopus microsporus , Mucor spp., and Syncephalastrum . Fusarium oxysporum and F. solani DNA was amplified from five specimens from patients initially diagnosed by histopathology as having aspergillosis. Aspergillus flavus , S. apiospermum , and Syncephalastrum were detected from histopathological mucormycosis samples. In addition, examination of four samples from patients suspected of having concomitant aspergillosis and mucormycosis infections resulted in the identification of two A. flavus isolates, one Mucor isolate, and only one sample having both R. oryzae and A. flavus . Our results indicate that histopathological features of molds may be easily confused in tissue sections. The qPCR assay used in this study is a reliable tool for the rapid and accurate identification of fungal pathogens to the genus and species levels directly from FFPE tissues.


2014 ◽  
Vol 80 (22) ◽  
pp. 6879-6887 ◽  
Author(s):  
Pin Yu ◽  
Shui-Ping Liu ◽  
Qing-Ting Bu ◽  
Zhen-Xing Zhou ◽  
Zhen-Hong Zhu ◽  
...  

ABSTRACTDetailed mechanisms ofWhiB-like (Wbl) proteins involved in antibiotic biosynthesis and morphological differentiation are poorly understood. Here, we characterize the role of WblAch, aStreptomyces chattanoogensisL10 protein belonging to this superfamily. Based on DNA microarray data and verified by real-time quantitative PCR (qRT-PCR), the expression ofwblAchwas shown to be positively regulated by AdpAch. Gel retardation assays and DNase I footprinting experiments showed that AdpAchhas specific DNA-binding activity for the promoter region ofwblAch. Gene disruption and genetic complementation revealed that WblAchacts in a positive manner to regulate natamycin production. WhenwblAchwas overexpressed in the wild-type strain, the natamycin yield was increased by ∼30%. This provides a strategy to generate improved strains for natamycin production. Moreover, transcriptional analysis showed that the expression levels ofwhigenes (includingwhiA,whiB,whiH, andwhiI) were severely depressed in the ΔwblAchmutant, suggesting that WblAchplays a part in morphological differentiation by influencing the expression of thewhigenes.


2017 ◽  
Vol 91 (6) ◽  
Author(s):  
Yi-Jiun Pan ◽  
Tzu-Lung Lin ◽  
Ching-Ching Chen ◽  
Yun-Ting Tsai ◽  
Yi-Hsiang Cheng ◽  
...  

ABSTRACT The genome of the multihost bacteriophage ΦK64-1, capable of infecting Klebsiella capsular types K1, K11, K21, K25, K30, K35, K64, and K69, as well as new capsular types KN4 and KN5, was analyzed and revealed that 11 genes (S1-1, S1-2, S1-3, S2-1, S2-2, S2-3, S2-4, S2-5, S2-6, S2-7, and S2-8) encode proteins with amino acid sequence similarity to tail fibers/spikes or lyases. S2-5 previously was shown to encode a K64 capsule depolymerase (K64dep). Specific capsule-degrading activities of an additional eight putative capsule depolymerases (S2-4 against K1, S1-1 against K11, S1-3 against K21, S2-2 against K25, S2-6 against K30/K69, S2-3 against K35, S1-2 against KN4, and S2-1 against KN5) was demonstrated by expression and purification of the recombinant proteins. Consistent with the capsular type-specific depolymerization activity of these gene products, phage mutants of S1-2, S2-2, S2-3, or S2-6 lost infectivity for KN4, K25, K35, or K30/K69, respectively, indicating that capsule depolymerase is crucial for infecting specific hosts. In conclusion, we identified nine functional capsule depolymerase-encoding genes in a bacteriophage and correlated activities of the gene products to all ten hosts of this phage, providing an example of type-specific host infection mechanisms in a multihost bacteriophage. IMPORTANCE We currently identified eight novel capsule depolymerases in a multihost Klebsiella bacteriophage and correlated the activities of the gene products to all hosts of this phage, providing an example of carriage of multiple depolymerases in a phage with a wide capsular type host spectrum. Moreover, we also established a recombineering system for modification of Klebsiella bacteriophage genomes and demonstrated the importance of capsule depolymerase for infecting specific hosts. Based on the powerful tool for modification of phage genome, further studies can be conducted to improve the understanding of mechanistic details of Klebsiella phage infection. Furthermore, the newly identified capsule depolymerases will be of great value for applications in capsular typing.


2015 ◽  
Vol 81 (16) ◽  
pp. 5290-5298 ◽  
Author(s):  
Mahmoud Kamal Ahmadi ◽  
Samar Fawaz ◽  
Charles H. Jones ◽  
Guojian Zhang ◽  
Blaine A. Pfeifer

ABSTRACTYersiniabactin (Ybt) is a mixed nonribosomal peptide-polyketide natural product natively produced by the pathogenYersinia pestis. The compound enables iron scavenging capabilities upon host infection and is biosynthesized by a nonribosomal peptide synthetase featuring a polyketide synthase module. This pathway has been engineered for expression and biosynthesis usingEscherichia colias a heterologous host. In the current work, the biosynthetic process for Ybt formation was improved through the incorporation of a dedicated step to eliminate the need for exogenous salicylate provision. When this improvement was made, the compound was tested in parallel applications that highlight the metal-chelating nature of the compound. In the first application, Ybt was assessed as a rust remover, demonstrating a capacity of ∼40% compared to a commercial removal agent and ∼20% relative to total removal capacity. The second application tested Ybt in removing copper from a variety of nonbiological and biological solution mixtures. Success across a variety of media indicates potential utility in diverse scenarios that include environmental and biomedical settings.


2021 ◽  
Vol 70 (7) ◽  
Author(s):  
Rosemonde Isabella Power ◽  
Nichola Elisa Davies Calvani ◽  
Yaarit Nachum-Biala ◽  
Harold Salant ◽  
Shimon Harrus ◽  
...  

Introduction. Bartonellosis is an emerging zoonotic disease caused by bacteria of the genus Bartonella . Mixed Bartonella infections are a well-documented phenomenon in mammals and their ectoparasites. The accurate identification of Bartonella species in single and mixed infections is valuable, as different Bartonella species have varying impacts on infected hosts. Gap Statement. Current diagnostic methods are inadequate at identifying the Bartonella species present in mixed infections. Aim. The aim of this study was to adopt a Next Generation Sequencing (NGS) approach using Illumina sequencing technology to identify Bartonella species and demonstrate that this approach can resolve mixed Bartonella infections. Methodology. We used Illumina PCR amplicon NGS to target the ssrA and gltA genes of Bartonella in fleas collected from cats, dogs and a hedgehog in Israel. We included artificially mixed Bartonella samples to demonstrate the ability for NGS to resolve mixed infections and we compared NGS to traditional Sanger sequencing. Results. In total, we identified 74 Ctenocephalides felis, two Ctenocephalides canis, two Pulex irritans and three Archaeopsylla e. erinacei fleas. Real-time PCR of a subset of 48 fleas revealed that twelve were positive for Bartonella , all of which were cat fleas. Sanger sequencing of the ssrA and gltA genes confirmed the presence of Bartonella henselae , Bartonella clarridgeiae and Bartonella koehlerae . Illumina NGS of ssrA and gltA amplicons further confirmed the Bartonella species identity in all 12 flea samples and unambiguously resolved the artificially mixed Bartonella samples. Conclusion. The adaptation and multiplexing of existing PCR assays for diversity profiling via NGS is a feasible approach that is superior to traditional Sanger sequencing for Bartonella speciation and resolving mixed Bartonella infections. The adaptation of other PCR primers for Illumina NGS will be useful in future studies where mixed bacterial infections may be present.


Sign in / Sign up

Export Citation Format

Share Document