scholarly journals Development of an Autofluorescent Whole-Cell Biocatalyst by Displaying Dual Functional Moieties on Escherichia coli Cell Surfaces and Construction of a Coculture with Organophosphate-Mineralizing Activity

2008 ◽  
Vol 74 (24) ◽  
pp. 7733-7739 ◽  
Author(s):  
Chao Yang ◽  
Yaran Zhu ◽  
Jijian Yang ◽  
Zheng Liu ◽  
Chuanling Qiao ◽  
...  

ABSTRACT Surface display of the active proteins on living cells has enormous potential in the degradation of numerous toxic compounds. Here, we report the codisplay of organophosphorus hydrolase (OPH) and enhanced green fluorescent protein (GFP) on the cell surface of Escherichia coli by use of the truncated ice nucleation protein (INPNC) and Lpp-OmpA fusion systems. The surface localization of both INPNC-OPH and Lpp-OmpA-GFP was demonstrated by Western blot analysis, immunofluorescence microscopy, and a protease accessibility experiment. Anchorage of GFP and OPH on the outer membrane neither inhibits cell growth nor affects cell viability, as shown by growth kinetics of cells and stability of resting cultures. The engineered E. coli can be applied in the form of a whole-cell biocatalyst and can be tracked by fluorescence during bioremediation. This strategy of codisplay should open a new dimension for the display of multiple functional moieties on the surface of a bacterial cell. Furthermore, a coculture comprised of the engineered E. coli and a natural p-nitrophenol (PNP) degrader, Ochrobactrum sp. strain LL-1, was assembled for complete mineralization of organophosphates (OPs) with a PNP substitution. The coculture degraded OPs as well as PNP rapidly. Therefore, the coculture with autofluorescent and mineralizing activities can potentially be applied for bioremediation of OP-contaminated sites.

2013 ◽  
Vol 634-638 ◽  
pp. 965-969
Author(s):  
Mei Na Zhao ◽  
Zongbao Zheng ◽  
Tao Chen

In this research, xylan was utilized by a recombinant whole cell biocatalyst, which was developed by expressing three xylanases — β-xylosidase, endoxylanase, and α-arabinofuranosidase — on the surface of the E. coli BL21 (DE3). The xylanases were displayed on the surface of the cells by fusing with anchor proteins, Blc. The assimilation of xylan by cell surface display was the first step in the consolidated bioprocessing (CBP). This result shows that the engineering strains could be endowed with the ability to assimilate xylan. The co-display engineering strains utilized xylan and expressed less metabolic burden than the engineering strains secreting extracellular xylanases.


2011 ◽  
Vol 55 (5) ◽  
pp. 2438-2441 ◽  
Author(s):  
Zeynep Baharoglu ◽  
Didier Mazel

ABSTRACTAntibiotic resistance development has been linked to the bacterial SOS stress response. InEscherichia coli, fluoroquinolones are known to induce SOS, whereas other antibiotics, such as aminoglycosides, tetracycline, and chloramphenicol, do not. Here we address whether various antibiotics induce SOS inVibrio cholerae. Reporter green fluorescent protein (GFP) fusions were used to measure the response of SOS-regulated promoters to subinhibitory concentrations of antibiotics. We show that unlike the situation withE. coli, all these antibiotics induce SOS inV. cholerae.


2003 ◽  
Vol 69 (8) ◽  
pp. 4915-4926 ◽  
Author(s):  
Michael B. Cooley ◽  
William G. Miller ◽  
Robert E. Mandrell

ABSTRACT Enteric pathogens, such as Salmonella enterica and Escherichia coli O157:H7, have been shown to contaminate fresh produce. Under appropriate conditions, these bacteria will grow on and invade the plant tissue. We have developed Arabidopsis thaliana (thale cress) as a model system with the intention of studying plant responses to human pathogens. Under sterile conditions and at 100% humidity, S. enterica serovar Newport and E. coli O157:H7 grew to 109 CFU g−1 on A. thaliana roots and to 2 × 107 CFU g−1 on shoots. Furthermore, root inoculation led to contamination of the entire plant, indicating that the pathogens are capable of moving on or within the plant in the absence of competition. Inoculation with green fluorescent protein-labeled S. enterica and E. coli O157:H7 showed invasion of the roots at lateral root junctions. Movement was eliminated and invasion decreased when nonmotile mutants of S. enterica were used. Survival of S. enterica serovar Newport and E. coli O157:H7 on soil-grown plants declined as the plants matured, but both pathogens were detectable for at least 21 days. Survival of the pathogen was reduced in unautoclaved soil and amended soil, suggesting competition from indigenous epiphytes from the soil. Enterobacter asburiae was isolated from soil-grown A. thaliana and shown to be effective at suppressing epiphytic growth of both pathogens under gnotobiotic conditions. Seed and chaff harvested from contaminated plants were occasionally contaminated. The rate of recovery of S. enterica and E. coli O157:H7 from seed varied from undetectable to 19% of the seed pools tested, depending on the method of inoculation. Seed contamination by these pathogens was undetectable in the presence of the competitor, Enterobacter asburiae. Sampling of 74 pools of chaff indicated a strong correlation between contamination of the chaff and seed (P = 0.025). This suggested that contamination of the seed occurred directly from contaminated chaff or by invasion of the flower or silique. However, contaminated seeds were not sanitized by extensive washing and chlorine treatment, indicating that some of the bacteria reside in a protected niche on the seed surface or under the seed coat.


2009 ◽  
Vol 72 (7) ◽  
pp. 1513-1520 ◽  
Author(s):  
MANAN SHARMA ◽  
DAVID T. INGRAM ◽  
JITENDRA R. PATEL ◽  
PATRICIA D. MILLNER ◽  
XIAOLIN WANG ◽  
...  

Internalization of Escherichia coli O157:H7 into spinach plants through root uptake is a potential route of contamination. ATn7-based plasmid vector was used to insert a green fluorescent protein gene into the attTn7 site in the E. coli chromosome. Three green fluorescent protein–labeled E. coli inocula were used: produce outbreak O157:H7 strains RM4407 and RM5279 (inoculum 1), ground beef outbreak O157:H7 strain 86-24h11 (inoculum 2), and commensal strain HS (inoculum 3). These strains were cultivated in fecal slurries and applied at ca. 103 or 107 CFU/g to pasteurized soils in which baby spinach seedlings were planted. No E. coli was recovered by spiral plating from surface-sanitized internal tissues of spinach plants on days 0, 7, 14, 21, and 28. Inoculum 1 survived at significantly higher populations (P < 0.05) in the soil than did inoculum 3 after 14, 21, and 28 days, indicating that produce outbreak strains of E. coli O157:H7 may be less physiologically stressed in soils than are nonpathogenic E. coli isolates. Inoculum 2 applied at ca. 107 CFU/ml to hydroponic medium was consistently recovered by spiral plating from the shoot tissues of spinach plants after 14 days (3.73 log CFU per shoot) and 21 days (4.35 log CFU per shoot). Fluorescent E. coli cells were microscopically observed in root tissues in 23 (21%) of 108 spinach plants grown in inoculated soils. No internalized E. coli was microscopically observed in shoot tissue of plants grown in inoculated soil. These studies do not provide evidence for efficient uptake of E. coli O157:H7 from soil to internal plant tissue.


Polymers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1184 ◽  
Author(s):  
Kim ◽  
Baritugo ◽  
Oh ◽  
Kang ◽  
Jung ◽  
...  

Cadaverine is a C5 diamine monomer used for the production of bio-based polyamide 510. Cadaverine is produced by the decarboxylation of l-lysine using a lysine decarboxylase (LDC). In this study, we developed recombinant Escherichia coli strains for the expression of LDC from Hafnia alvei. The resulting recombinant XBHaLDC strain was used as a whole cell biocatalyst for the high-level bioconversion of l-lysine into cadaverine without the supplementation of isopropyl β-d-1-thiogalactopyranoside (IPTG) for the induction of protein expression and pyridoxal phosphate (PLP), a key cofactor for an LDC reaction. The comparison of results from enzyme characterization of E. coli and H. alvei LDC revealed that H. alvei LDC exhibited greater bioconversion ability than E. coli LDC due to higher levels of protein expression in all cellular fractions and a higher specific activity at 37 °C (1825 U/mg protein > 1003 U/mg protein). The recombinant XBHaLDC and XBEcLDC strains were constructed for the high-level production of cadaverine. Recombinant XBHaLDC produced a 1.3-fold higher titer of cadaverine (6.1 g/L) than the XBEcLDC strain (4.8 g/L) from 10 g/L of l-lysine. Furthermore, XBHaLDC, concentrated to an optical density (OD600) of 50, efficiently produced 136 g/L of cadaverine from 200 g/L of l-lysine (97% molar yield) via an IPTG- and PLP-free whole cell bioconversion reaction. Cadaverine synthesized via a whole cell biocatalyst reaction using XBHaLDC was purified to polymer grade, and purified cadaverine was successfully used for the synthesis of polyamide 510. In conclusion, an IPTG- and PLP-free whole cell bioconversion process of l-lysine into cadaverine, using recombinant XBHaLDC, was successfully utilized for the production of bio-based polyamide 510, which has physical and thermal properties similar to polyamide 510 synthesized from chemical-grade cadaverine.


2020 ◽  
Vol 8 (7) ◽  
pp. 1051 ◽  
Author(s):  
Aleksandar Božić ◽  
Robin C. Anderson ◽  
Tawni L. Crippen ◽  
Christina L. Swaggerty ◽  
Michael E. Hume ◽  
...  

Numerous Salmonella enterica serovars can cause disease and contamination of animal-produced foods. Oligosaccharide-rich products capable of blocking pathogen adherence to intestinal mucosa are attractive alternatives to antibiotics as these have potential to prevent enteric infections. Presently, a wood-derived prebiotic composed mainly of glucose-galactose-mannose-xylose oligomers was found to inhibit mannose-sensitive binding of select Salmonella Typhimurium and Escherichia coli strains when reacted with Saccharomyces boulardii. Tests for the ability of the prebiotic to prevent binding of a green fluorescent protein (GFP)-labeled S. Typhimurium to intestinal porcine epithelial cells (IPEC-J2) cultured in vitro revealed that prebiotic-exposed GFP-labeled S. Typhimurium bound > 30% fewer individual IPEC-J2 cells than did GFP-labeled S. Typhimurium having no prebiotic exposure. Quantitatively, 90% fewer prebiotic-exposed GFP-labeled S. Typhimurium cells were bound per individual IPEC-J2 cell compared to non-prebiotic exposed GFP-labeled S. Typhimurium. Comparison of invasiveness of S. Typhimurium DT104 against IPEC-J2 cells revealed greater than a 90% decrease in intracellular recovery of prebiotic-exposed S. Typhimurium DT104 compared to non-exposed controls (averaging 4.4 ± 0.2 log10 CFU/well). These results suggest compounds within the wood-derived prebiotic bound to E. coli and S. Typhimurium-produced adhesions and in the case of S. Typhimurium, this adhesion-binding activity inhibited the binding and invasion of IPEC-J2 cells.


BioTechniques ◽  
2020 ◽  
Vol 68 (2) ◽  
pp. 91-95 ◽  
Author(s):  
Tomo Kondo ◽  
Shigehiko Yumura

During molecular cloning, screening bacterial transformants is a time-consuming and labor-intensive process; however, tractable tools that can be applied to various vectors for visual confirmation of desired colonies are limited. Recently, we reported that translational enhancement by a Dictyostelium gene sequence (TED) boosted protein expression even without an expression inducer in Escherichia coli. Here, we demonstrate a generally applicable molecular tool using the expression of green fluorescent protein enhanced by TED. By inserting a module related to TED into the cloning site in advance, we effectively screened E. coli colonies harboring the desired plasmid functions in a prokaryote ( Magnetospirillum gryphiswaldense) or eukaryote ( Dictyostelium discoideum). Thus, our system represents a user-friendly technique for cloning.


2002 ◽  
Vol 68 (6) ◽  
pp. 3114-3120 ◽  
Author(s):  
A. O. Charkowski ◽  
J. D. Barak ◽  
C. Z. Sarreal ◽  
R. E. Mandrell

ABSTRACT Sprout producers have recently been faced with several Salmonella enterica and Escherichia coli O157:H7 outbreaks. Many of the outbreaks have been traced to sprout seeds contaminated with low levels of human pathogens. Alfalfa seeds were inoculated with S. enterica and E. coli O157:H7 strains isolated from alfalfa seeds or other environmental sources and sprouted to examine growth of these human pathogens in association with sprouting seeds. S. enterica strains grew an average of 3.7 log10 on sprouting seeds over 2 days, while E. coli O157:H7 strains grew significantly less, an average of 2.3 log10. The initial S. enterica or E. coli O157:H7 inoculum dose and seed-sprouting temperature significantly affected the levels of both S. enterica and E. coli O157:H7 on the sprouts and in the irrigation water, while the frequency of irrigation water replacement affected only the levels of E. coli O157:H7. Colonization of sprouting alfalfa seeds by S. enterica serovar Newport and E. coli O157:H7 strains transformed with a plasmid encoding the green fluorescent protein was examined with fluorescence microscopy. Salmonella serovar Newport colonized both seed coats and sprout roots as aggregates, while E. coli O157:H7 colonized only sprout roots.


2005 ◽  
Vol 71 (9) ◽  
pp. 5163-5170 ◽  
Author(s):  
Y. Chen ◽  
S. Sela ◽  
M. Gamburg ◽  
R. Pinto ◽  
Z. G. Weinberg

ABSTRACT A recombinant Escherichia coli strain carrying a plasmid with an antibiotic resistance marker and expressing the green fluorescent protein was inoculated at a concentration of 3.8 × 108 CFU/g into direct-cut wheat (348 g of dry matter kg−1), wilted wheat (450 g of dry matter kg−1), and corn (375 g of dry matter kg−1). The forages were ensiled in mini-silos. The treatments included control (no E. coli added), application of tagged E. coli, and delayed sealing of the inoculated wheat. Three silos per treatment were sampled on predetermined dates, and the numbers of E. coli were determined on Chromocult TBX medium with or without kanamycin. Colonies presumptively identified as E. coli were also tested for fluorescence activity. Addition of E. coli at the time of ensiling resulted in a more rapid decrease in the pH but had almost no effect on the chemical composition of the final silages or their aerobic stability. E. coli disappeared from the silages when the pH decreased below 5.0. It persisted longer in silages of wilted wheat, in which the pH declined more slowly. Control silages of all crops also contained bacteria, presumptively identified as E. coli, that were resistant to the antibiotic, which suggests that some epiphytic strains are naturally resistant to antibiotics.


Sign in / Sign up

Export Citation Format

Share Document