scholarly journals Exploring Proteomes of Robust Yarrowia lipolytica Isolates Cultivated in Biomass Hydrolysate Reveals Key Processes Impacting Mixed Sugar Utilization, Lipid Accumulation, and Degradation

mSystems ◽  
2021 ◽  
Author(s):  
Caleb Walker ◽  
Bruce Dien ◽  
Richard J. Giannone ◽  
Patricia Slininger ◽  
Stephanie R. Thompson ◽  
...  

Yarrowia lipolytica is an important industrial oleaginous yeast due to its robust phenotypes for effective conversion of inhibitory lignocellulosic biomass hydrolysates into neutral lipids. While lipid accumulation has been well characterized in this organism, its interconnected lipid degradation phenotype is poorly understood during fermentation of biomass hydrolysates.

2013 ◽  
Vol 79 (23) ◽  
pp. 7360-7370 ◽  
Author(s):  
John Seip ◽  
Raymond Jackson ◽  
Hongxian He ◽  
Quinn Zhu ◽  
Seung-Pyo Hong

ABSTRACTIn the oleaginous yeastYarrowia lipolytica,de novolipid synthesis and accumulation are induced under conditions of nitrogen limitation (or a high carbon-to-nitrogen ratio). The regulatory pathway responsible for this induction has not been identified. Here we report that the SNF1 pathway plays a key role in the transition from the growth phase to the oleaginous phase inY. lipolytica. Strains with aY. lipolyticasnf1(Ylsnf1) deletion accumulated fatty acids constitutively at levels up to 2.6-fold higher than those of the wild type. When introduced into aY. lipolyticastrain engineered to produce omega-3 eicosapentaenoic acid (EPA),Ylsnf1deletion led to a 52% increase in EPA titers (7.6% of dry cell weight) over the control. Other components of theY. lipolyticaSNF1 pathway were also identified, and their function in limiting fatty acid accumulation is suggested by gene deletion analyses. Deletion of the gene encoding YlSnf4, YlGal83, or YlSak1 significantly increased lipid accumulation in both growth and oleaginous phases compared to the wild type. Furthermore, microarray and quantitative reverse transcription-PCR (qRT-PCR) analyses of theYlsnf1mutant identified significantly differentially expressed genes duringde novolipid synthesis and accumulation inY. lipolytica. Gene ontology analysis found that these genes were highly enriched with genes involved in lipid metabolism. This work presents a new role for Snf1/AMP-activated protein kinase (AMPK) pathways in lipid accumulation in this oleaginous yeast.


2021 ◽  
Author(s):  
Caleb Walker ◽  
Bruce Dien ◽  
Richard J Giannone ◽  
Patricia Slininger ◽  
Stephanie R Thompson ◽  
...  

Yarrowia lipolytica is an oleaginous yeast exhibiting robust phenotypes beneficial for industrial biotechnology. The phenotypic diversity found within the undomesticated Y. lipolytica clade from various origins illuminates desirable phenotypic traits not found in the conventional laboratory strain CBS7504, which include xylose utilization, lipid accumulation, and growth on undetoxified biomass hydrolysates. Currently, the related phenotypes of lipid accumulation and degradation when metabolizing non-preferred sugars (e.g., xylose) associated with biomass hydrolysates  are poorly understood, making it difficult to control and engineer in Y. lipolytica To fill this knowledge gap, we analyzed the genetic diversity of five undomesticated Y. lipolytica strains and identified singleton genes and genes exclusively shared by strains exhibiting desirable phenotypes. Strain characterizations from controlled bioreactor cultures revealed that the undomesticated strain YB420 used xylose to support cell growth and maintained high lipid levels while the conventional strain CBS7504 degraded cell biomass and lipids when xylose was the sole remaining carbon source. From proteomic analysis, we identified carbohydrate transporters, xylose metabolic enzymes and pentose phosphate pathway proteins stimulated during the xylose uptake stage for both strains. Furthermore, we distinguished proteins in lipid metabolism (e.g., lipase, NADPH generation, lipid regulators, β-oxidation) activated by YB420 (lipid maintenance phenotype) or CBS7504 (lipid degradation phenotype) when xylose was the sole remaining carbon source. Overall, the results relate genetic diversity of undomesticated Y. lipolytica strains to complex phenotypes of superior growth, sugar utilization, lipid accumulation and degradation in biomass hydrolysates.


Author(s):  
Liting Lyu ◽  
Yadong Chu ◽  
Sufang Zhang ◽  
Yue Zhang ◽  
Qitian Huang ◽  
...  

Conversion of lignocellulosic biomass into lipids and related chemicals has attracted much attention in the past two decades, and the oleaginous yeast Rhodosporidiumtoruloides has been widely used in this area. While R. toruloides species naturally have physiological advantages in terms of substrate utilization, lipid accumulation, and inhibitor resistance, reduced lipid production and cell growth are noticed when biomass hydrolysates are used as feedstocks. To improve the robustness of R. toruloides, here, we devised engineered strains by overexpressing genes responsible for phenolic compound degradation. Specifically, gene expression cassettes of the manganese peroxidase gene (MNP) and versatile peroxidase gene (VP) were constructed and integrated into the genome of R. toruloides NP11. A series of engineered strains were evaluated for lipid production in the presence of typical phenolic inhibitors. The results showed that R. toruloides strains with proper expression of MNP or VP indeed grew faster in the presence of vanillin and 5-hydroxymethylfurfural than the parental strain. When cultivated in concentrated mode biomass hydrolysates, the strain VP18 had improved performance as the cell mass and lipid content increased by 30% and 25%, respectively. This study provides more robust oleaginous yeast strains for microbial lipid production from lignocellulosic biomass, and similar efforts may be used to devise more advanced lipid producers.


2017 ◽  
Vol 84 (3) ◽  
Author(s):  
Seunghyun Ryu ◽  
Cong T. Trinh

ABSTRACT Pentoses, including xylose and arabinose, are the second most prevalent sugars in lignocellulosic biomass that can be harnessed for biological conversion. Although Yarrowia lipolytica has emerged as a promising industrial microorganism for production of high-value chemicals and biofuels, its native pentose metabolism is poorly understood. Our previous study demonstrated that Y. lipolytica (ATCC MYA-2613) has endogenous enzymes for d -xylose assimilation, but inefficient xylitol dehydrogenase causes Y. lipolytica to assimilate xylose poorly. In this study, we investigated the functional roles of native sugar-specific transporters for activating the dormant pentose metabolism in Y. lipolytica . By screening a comprehensive set of 16 putative pentose-specific transporters, we identified two candidates, YALI0C04730p and YALI0B00396p, that enhanced xylose assimilation. The engineered mutants YlSR207 and YlSR223, overexpressing YALI0C04730p and YALI0B00396p, respectively, improved xylose assimilation approximately 23% and 50% in comparison to YlSR102, a parental engineered strain overexpressing solely the native xylitol dehydrogenase gene. Further, we activated and elucidated a widely unknown native l -arabinose assimilation pathway in Y. lipolytica through transcriptomic and metabolic analyses. We discovered that Y. lipolytica can coconsume xylose and arabinose, where arabinose utilization shares transporters and metabolic enzymes of some intermediate steps of the xylose assimilation pathway. Arabinose assimilation is synergistically enhanced in the presence of xylose, while xylose assimilation is competitively inhibited by arabinose. l -Arabitol dehydrogenase is the rate-limiting step responsible for poor arabinose utilization in Y. lipolytica . Overall, this study sheds light on the cryptic pentose metabolism of Y. lipolytica and, further, helps guide strain engineering of Y. lipolytica for enhanced assimilation of pentose sugars. IMPORTANCE The oleaginous yeast Yarrowia lipolytica is a promising industrial-platform microorganism for production of high-value chemicals and fuels. For decades since its isolation, Y. lipolytica has been known to be incapable of assimilating pentose sugars, xylose and arabinose, that are dominantly present in lignocellulosic biomass. Through bioinformatic, transcriptomic, and enzymatic studies, we have uncovered the dormant pentose metabolism of Y. lipolytica . Remarkably, unlike most yeast strains, which share the same transporters for importing hexose and pentose sugars, we discovered that Y. lipolytica possesses the native pentose-specific transporters. By overexpressing these transporters together with the rate-limiting d -xylitol and l -arabitol dehydrogenases, we activated the dormant pentose metabolism of Y. lipolytica . Overall, this study provides a fundamental understanding of the dormant pentose metabolism of Y. lipolytica and guides future metabolic engineering of Y. lipolytica for enhanced conversion of pentose sugars to high-value chemicals and fuels.


2020 ◽  
Vol 20 (5) ◽  
Author(s):  
Annapurna Kamineni ◽  
Shuyan Chen ◽  
Gamuchirai Chifamba ◽  
Vasiliki Tsakraklides

Abstract Yarrowia lipolytica is a non-conventional yeast with potential applications in the biofuel and biochemical industries. It is an oleaginous yeast that accumulates lipids when it encounters nutrient limitation in the presence of excess carbon. Its molecular toolbox includes promoters for robust constitutive expression, regulated expression through the addition of media components and inducible expression during lipid accumulation. To date, no promoters have been identified that lead to downregulation at the transition from growth to lipid accumulation. We identified four native Y. lipolytica promoters that downregulate the expression of genes at this natural transition. Using the fatty acid desaturase genes FAD2 and OLE1 as reporter genes for these promoters, we correlated repression of desaturase transcript levels with a reduction of desaturated fatty acids at the transition to lipid accumulation. These promoters can restrict to the growth phase an essential or favorable activity that is undesirable during lipid accumulation under traditional fermentation conditions without media additions. This expression pattern results in lipogenesis phase-specific changes that could be useful in applications relating to optimizing lipid yield and composition.


2013 ◽  
Vol 35 (12) ◽  
pp. 2091-2098 ◽  
Author(s):  
Huaiyuan Zhang ◽  
Luning Zhang ◽  
Haiqin Chen ◽  
Yong Q. Chen ◽  
Colin Ratledge ◽  
...  

2019 ◽  
Vol 86 (3) ◽  
Author(s):  
Caleb Walker ◽  
Seunghyun Ryu ◽  
Richard J. Giannone ◽  
Sergio Garcia ◽  
Cong T. Trinh

ABSTRACT Thiamine is a vitamin that functions as a cofactor for key enzymes in carbon and energy metabolism in all living cells. While most plants, fungi, and bacteria can synthesize thiamine de novo, the oleaginous yeast Yarrowia lipolytica cannot. In this study, we used proteomics together with physiological characterization to elucidate key metabolic processes influenced and regulated by thiamine availability and to identify the genetic basis of thiamine auxotrophy in Y. lipolytica. Specifically, we found that thiamine depletion results in decreased protein abundance for the lipid biosynthesis pathway and energy metabolism (i.e., ATP synthase), leading to the negligible growth and poor sugar assimilation observed in our study. Using comparative genomics, we identified the missing 4-amino-5-hydroxymethyl-2-methylpyrimidine phosphate synthase (THI13) gene for the de novo thiamine biosynthesis in Y. lipolytica and discovered an exceptional promoter, P3, that exhibits strong activation and tight repression by low and high thiamine concentrations, respectively. Capitalizing on the strength of our thiamine-regulated promoter (P3) to express the missing gene from Saccharomyces cerevisiae (scTHI13), we engineered a thiamine-prototrophic Y. lipolytica strain. By comparing this engineered strain to the wild-type strain, we revealed the tight relationship between thiamine availability and lipid biosynthesis and demonstrated enhanced lipid production with thiamine supplementation in the engineered thiamine-prototrophic Y. lipolytica strain. IMPORTANCE Thiamine plays a crucial role as an essential cofactor for enzymes involved in carbon and energy metabolism in all living cells. Thiamine deficiency has detrimental consequences for cellular health. Yarrowia lipolytica, a nonconventional oleaginous yeast with broad biotechnological applications, is a native thiamine auxotroph whose affected cellular metabolism is not well understood. Therefore, Y. lipolytica is an ideal eukaryotic host for the study of thiamine metabolism, especially because mammalian cells are also thiamine auxotrophic and thiamine deficiency is implicated in several human diseases. This study elucidates the fundamental effects of thiamine deficiency on cellular metabolism in Y. lipolytica and identifies genes and novel thiamine-regulated elements that eliminate thiamine auxotrophy in Y. lipolytica. Furthermore, the discovery of thiamine-regulated elements enables the development of thiamine biosensors with useful applications in synthetic biology and metabolic engineering.


2015 ◽  
Vol 82 (4) ◽  
pp. 1334-1345 ◽  
Author(s):  
Seunghyun Ryu ◽  
Julie Hipp ◽  
Cong T. Trinh

ABSTRACTThe oleaginous yeastYarrowia lipolyticais an industrially important host for production of organic acids, oleochemicals, lipids, and proteins with broad biotechnological applications. Albeit known for decades, the unique native metabolism ofY. lipolyticafor using complex fermentable sugars, which are abundant in lignocellulosic biomass, is poorly understood. In this study, we activated and elucidated the native sugar metabolism inY. lipolyticafor cell growth on xylose and cellobiose as well as their mixtures with glucose through comprehensive metabolic and transcriptomic analyses. We identified 7 putative glucose-specific transporters, 16 putative xylose-specific transporters, and 4 putative cellobiose-specific transporters that are transcriptionally upregulated for growth on respective single sugars.Y. lipolyticais capable of using xylose as a carbon source, but xylose dehydrogenase is the key bottleneck of xylose assimilation and is transcriptionally repressed by glucose.Y. lipolyticahas a set of 5 extracellular and 6 intracellular β-glucosidases and is capable of assimilating cellobiose via extra- and intracellular mechanisms, the latter being dominant for growth on cellobiose as a sole carbon source. Strikingly,Y. lipolyticaexhibited enhanced sugar utilization for growth in mixed sugars, with strong carbon catabolite activation for growth on the mixture of xylose and cellobiose and with mild carbon catabolite repression of glucose on xylose and cellobiose. The results of this study shed light on fundamental understanding of the complex native sugar metabolism ofY. lipolyticaand will help guide inverse metabolic engineering ofY. lipolyticafor enhanced conversion of biomass-derived fermentable sugars to chemicals and fuels.


2018 ◽  
Vol 7 (12) ◽  
Author(s):  
Caleb Walker ◽  
Seunghyun Ryu ◽  
Hyunsoo Na ◽  
Matthew Zane ◽  
Kurt LaButti ◽  
...  

Screening the genetic diversity of 45 Yarrowia lipolytica strains identified five candidates with unique metabolic capability and robustness in undetoxified switchgrass hydrolysates, including superior lipid production and efficient pentose sugar utilization. Here, we report the genome sequences of these strains to study their robustness and potential to produce fuels and chemicals.


Sign in / Sign up

Export Citation Format

Share Document