lipid degradation
Recently Published Documents


TOTAL DOCUMENTS

118
(FIVE YEARS 31)

H-INDEX

22
(FIVE YEARS 3)

Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 114
Author(s):  
Yang Wang ◽  
Mingxia Jin ◽  
Lichao Wang ◽  
Ailin Yu ◽  
Guai Xie ◽  
...  

In order to study the key gene in internal causes of pinewood nematode (PWN), Bursaphelenchus xylophilus, a departure from its vector beetle, Monochamus alternatus, we collected PWNs extracted from newly emerged M. alternatus and beetles 7 days after emergence. The total RNAs of the two groups of PWNs were extracted, transcriptomes sequencing was performed, and gene expression differences between the two groups of PWN were analyzed. It was found that the expression of the choline-phosphate cytidylyltransferase gene (pcyt-1) was markedly up-regulated. After inhibition of pcyt-1 expression by RNA interference, the rate of lipid degradation in PWN decreased significantly, and the motility of PWN also decreased significantly. The analysis identified that phosphatidylcholine could promote the emulsification and degradation of neutral lipid granules in PWN, which provides sufficient energy for PWN departure from M. alternatus. The up-regulation of the gene pcyt-1 is an important internal factor for PWN departure from its vector.


Foods ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 47
Author(s):  
Natalia Pachura ◽  
Robert Kupczyński ◽  
Jordan Sycz ◽  
Agata Kuklińska ◽  
Anna Zwyrzykowska-Wodzińska ◽  
...  

Plants of the genus Ilex are widespread throughout the world, with its best-known representative being Ilex paraguraiensis from South America. The European species Ilex aquifolium shows similarities in its terpenoid, sugar and phenolic acid profiles. Using aqueous extracts of Ilex aquifolium as a supplement in Wistar rats showed that, despite the lack of caffeine, it had strong hypocholesterolemic effects. In addition, a reduction in oxidative lipid degradation and a decrease in hepatic steatosis in histopathological studies were observed. The results of this study suggest that extracts from the European species Ilex aquifolium may have potential as an alternative treatment for hyperlipidemia.


2021 ◽  
Author(s):  
Reihaneh Bashiri ◽  
Ben Allen ◽  
Burhan Shamurad ◽  
Martin Pabst ◽  
Thomas P Curtis ◽  
...  

Poor lipid degradation limits low-temperature anaerobic treatment of domestic wastewater even when psychrophiles are used. We combined metagenomics and metaproteomics to find lipolytic bacteria and their potential, and actual, cold-adapted extracellular lipases in anaerobic membrane bioreactors treating domestic wastewater at 4℃ and 15℃. Of the 40 recovered putative lipolytic metagenome-assembled genomes (MAGs), only three (Chlorobium, Desulfobacter, and Mycolicibacterium) were common and abundant (relative abundance ≥ 1%) in all reactors. Notably, some MAGs that represented aerobic autotrophs contained lipases. Therefore, we hypothesised that the lipases we found are not always associated with exogenous lipid degradation and can have other roles such as polyhydroxyalkanoates (PHA) accumulation/degradation and interference with the outer membranes of other bacteria. Metaproteomics did not provide sufficient proteome coverage for relatively lower abundant proteins such as lipases though the expression of fadL genes, long-chain fatty acid transporters, was confirmed for four genera (Dechloromonas, Azoarcus, Aeromonas and Sulfurimonas), none of which were recovered as putative lipolytic MAGs. Metaproteomics also confirmed the presence of 15 relatively abundant (≥1%) genera in all reactors, of which at least 6 can potentially accumulate lipid/polyhydroxyalkanoates. For most putative lipolytic MAGs, there was no statistically significant correlation between the read abundance and reactor conditions such as temperature, phase (biofilm and bulk liquid), and feed type (treated by ultraviolet light or not). Results obtained by metagenomics and metaproteomics did not confirm each other and further work is required to identify the true lipid degraders in these systems. Keywords: Anaerobic treatment, domestic wastewater, psychrophilic extracellular lipases, metagenomics, metaproteomics


Author(s):  
Xiao-yan Zu ◽  
Hai-lan Li ◽  
Guang-quan Xiong ◽  
Tao Liao ◽  
Ying-hui Yu ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yoshiaki Maeda ◽  
Kahori Watanabe ◽  
Marshila Kaha ◽  
Yusuke Yabu ◽  
Tomoko Yoshino ◽  
...  

AbstractMicroalgae are promising producers of biofuel due to higher accumulation of triacylglycerol (TAG). However, further improvement of the lipid metabolism is critical for feasible application of microalgae in industrial production of biofuel. Suppression of lipid degradation pathways is a promising way to remarkably increase the lipid production in model diatoms. In this study, we established an antisense-based knockdown (KD) technique in the marine oleaginous diatom, Fistulifera solaris. This species has a capability to accumulate high content of lipids. Tgl1 KD showed positive impact on cell growth and lipid accumulation in conventional culture in f/2 medium, resulting in higher oil contents compared to wild type strain. However, these impacts of Tgl1 KD were slight when the cells were subjected to the two-stage growth system. The Tgl1 KD resulted in slight change of fatty acid composition; increasing in C14:0, C16:0 and C16:1, and decreasing in C20:5. This study indicates that, although Tgl1 played a certain role in lipid degradation in F. solaris, suppression of only a single type of TAG lipase was not significantly effective to improve the lipid production. Comprehensive understanding of the lipid catabolism in this microalga is essential to further improve the lipid production.


2021 ◽  
Author(s):  
Sebastian Boland ◽  
Sharan Swarup ◽  
Yohannes A Ambaw ◽  
Ruth C Richards ◽  
Alexander W Fischer ◽  
...  

Homozygous mutations of granulin precursor (GRN) lead to neuronal ceroid lipofuscinosis, a severe neurodevelopmental disease, in humans and neuroinflammation in mice. Haploinsufficiency of GRN almost invariably causes frontotemporal dementia (FTD). The GRN locus produces progranulin (PGRN), a lysosomal precursor protein that is cleaved to granulin peptides. Despite intensive investigation, the function of granulins and the reason why their absence causes neurodegeneration remain unclear. Here, we investigated PGRN function in lipid degradation, a major function of lysosomes. We show that PGRN knockout human cells, PGRN-deficient murine brain, and frontal lobes of human brains from subjects with PGRN deficient FTD have increased levels of gangliosides, highly abundant sialic acid containing glycosphingolipids (GSL) that are degraded in lysosomes. Probing how PGRN deficiency causes these changes, we found normal levels and activities of enzymes that catabolize gangliosides. However, levels of bis(monoacylglycero)phosphate (BMP), a lysosomal lipid required for ganglioside catabolism, were markedly reduced in PGRN deficient cells and brain tissues. These data indicate that granulins are required to maintain BMP levels, which regulate ganglioside catabolism, and that PGRN deficiency in lysosomes leads to gangliosidosis. This aberrant accumulation of gangliosides may contribute to neuroinflammation and neurodegeneration susceptibility.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Xiao-Xi Wu ◽  
Jian-Wei Li ◽  
Su-Fang Xing ◽  
Hui-Ting Chen ◽  
Chao Song ◽  
...  

Abstract Background Isobutanol is an attractive biofuel with many advantages. Third-generation biorefineries that convert CO2 into bio-based fuels have drawn considerable attention due to their lower feedstock cost and more ecofriendly refining process. Although autotrophic cyanobacteria have been genetically modified for isobutanol biosynthesis, there is a lack of stable and convenient strategies to improve their production. Results In this study, we first engineered Synechococcus elongatus for isobutanol biosynthesis by introducing five exogenous enzymes, reaching a production titer of 0.126 g/L at day 20. It was then discovered that high salinity stress could result in a whopping fivefold increase in isobutanol production, with a maximal in-flask titer of 0.637 g/L at day 20. Metabolomics analysis revealed that high salinity stress substantially altered the metabolic profiles of the engineered S. elongatus. A major reason for the enhanced isobutanol production is the acceleration of lipid degradation under high salinity stress, which increases NADH. The NADH then participates in the engineered isobutanol-producing pathway. In addition, increased membrane permeability also contributed to the isobutanol production titer. A cultivation system was subsequently developed by mixing synthetic wastewater with seawater to grow the engineered cyanobacteria, reaching a similar isobutanol production titer as cultivation in the medium. Conclusions High salinity stress on engineered cyanobacteria is a practical and feasible biotechnology to optimize isobutanol production. This biotechnology provides a cost-effective approach to biofuel production, and simultaneously recycles chemical nutrients from wastewater and seawater.


Sign in / Sign up

Export Citation Format

Share Document