scholarly journals Bioproduction of p-Hydroxystyrene from Glucose by the Solvent-Tolerant Bacterium Pseudomonas putida S12 in a Two-Phase Water-Decanol Fermentation

2008 ◽  
Vol 75 (4) ◽  
pp. 931-936 ◽  
Author(s):  
Suzanne Verhoef ◽  
Nick Wierckx ◽  
R. G. Maaike Westerhof ◽  
Johannes H. de Winde ◽  
Harald J. Ruijssenaars

ABSTRACT Two solvent-tolerant Pseudomonas putida S12 strains, originally designed for phenol and p-coumarate production, were engineered for efficient production of p-hydroxystyrene from glucose. This was established by introduction of the genes pal and pdc encoding l-phenylalanine/l-tyrosine ammonia lyase and p-coumaric acid decarboxylase, respectively. These enzymes allow the conversion of the central metabolite l-tyrosine into p-hydroxystyrene, via p-coumarate. Degradation of the p-coumarate intermediate was prevented by inactivating the fcs gene encoding feruloyl-coenzyme A synthetase. The best-performing strain was selected and cultivated in the fed-batch mode, resulting in the formation of 4.5 mM p-hydroxystyrene at a yield of 6.7% (C-mol of p-hydroxystyrene per C-mol of glucose) and a maximum volumetric productivity of 0.4 mM h−1. At this concentration, growth and production were completely halted due to the toxicity of p-hydroxystyrene. Product toxicity was overcome by the application of a second phase of 1-decanol to extract p-hydroxystyrene during fed-batch cultivation. This resulted in a twofold increase of the maximum volumetric productivity (0.75 mM h−1) and a final total p-hydroxystyrene concentration of 21 mM, which is a fourfold improvement compared to the single-phase fed-batch cultivation. The final concentration of p-hydroxystyrene in the water phase was 1.2 mM, while a concentration of 147 mM (17.6 g liter−1) was obtained in the 1-decanol phase. Thus, a P. putida S12 strain producing the low-value compound phenol was successfully altered for the production of the toxic value-added compound p-hydroxystyrene.

Fermentation ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 62
Author(s):  
Konstantins Dubencovs ◽  
Janis Liepins ◽  
Arturs Suleiko ◽  
Anastasija Suleiko ◽  
Reinis Vangravs ◽  
...  

The Kluyveromyces marxianus yeast recently has gained considerable attention due to its applicability in high-value-added product manufacturing. In order to intensify the biosynthesis rate of a target product, reaching high biomass concentrations in the reaction medium is mandatory. Fed-batch processes are an attractive and efficient way how to achieve high cell densities. However, depending on the physiology of the particular microbial strain, an optimal media composition should be used to avoid by-product synthesis and, subsequently, a decrease in overall process effi-ciency. Thus, the aim of the present study was to optimise the synthetic growth medium and feeding solution compositions (in terms of carbon, nitrogen, phosphorous, magnesium, and calcium concentrations) for high cell density K. marxianus fed‑batch cultivations. Additionally, the biomass yields from the vitamin mixture and other macro/microelements were identified. A model predictive control algorithm was successfully applied for a fed-batch cultivation control. Biomass growth and substrate consumption kinetics were compared with the mathematical model predictions. Finally, 2‑phenylethanol biosynthesis was induced and its productivity was estimated. The determined optimal macronutrient ratio for K. marxianus biomass growth was identified as C:N:P = 1:0.07:0.011. The maximal attained yeast biomass concentration was close to 70 g·L-1 and the 2-PE biosynthesis rate was 0.372 g·L−1·h−1, with a yield of 74% from 2-phenylalanine.


2005 ◽  
Vol 71 (12) ◽  
pp. 8221-8227 ◽  
Author(s):  
Nick J. P. Wierckx ◽  
Hendrik Ballerstedt ◽  
Jan A. M. de Bont ◽  
Jan Wery

ABSTRACT Efficient bioconversion of glucose to phenol via the central metabolite tyrosine was achieved in the solvent-tolerant strain Pseudomonas putida S12. The tpl gene from Pantoea agglomerans, encoding tyrosine phenol lyase, was introduced into P. putida S12 to enable phenol production. Tyrosine availability was a bottleneck for efficient production. The production host was optimized by overexpressing the aroF-1 gene, which codes for the first enzyme in the tyrosine biosynthetic pathway, and by random mutagenesis procedures involving selection with the toxic antimetabolites m-fluoro-dl-phenylalanine and m-fluoro-l-tyrosine. High-throughput screening of analogue-resistant mutants obtained in this way yielded a P. putida S12 derivative capable of producing 1.5 mM phenol in a shake flask culture with a yield of 6.7% (mol/mol). In a fed-batch process, the productivity was limited by accumulation of 5 mM phenol in the medium. This toxicity was overcome by use of octanol as an extractant for phenol in a biphasic medium-octanol system. This approach resulted in accumulation of 58 mM phenol in the octanol phase, and there was a twofold increase in the overall production compared to a single-phase fed batch.


2003 ◽  
Vol 27 (1) ◽  
pp. 175-181 ◽  
Author(s):  
Marianne H Thuesen ◽  
Allan Nørgaard ◽  
Anne M Hansen ◽  
Mikael B Caspersen ◽  
Hans E.M Christensen

2008 ◽  
Vol 100 (1) ◽  
pp. 177-183 ◽  
Author(s):  
Kristin Baumann ◽  
Michael Maurer ◽  
Martin Dragosits ◽  
Oriol Cos ◽  
Pau Ferrer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document