scholarly journals Discovery and Biosynthesis of the Antibiotic Bicyclomycin in Distantly Related Bacterial Classes

2018 ◽  
Vol 84 (9) ◽  
Author(s):  
Natalia M. Vior ◽  
Rodney Lacret ◽  
Govind Chandra ◽  
Siobhán Dorai-Raj ◽  
Martin Trick ◽  
...  

ABSTRACTBicyclomycin (BCM) is a clinically promising antibiotic that is biosynthesized byStreptomyces cinnamoneusDSM 41675. BCM is structurally characterized by a core cyclo(l-Ile-l-Leu) 2,5-diketopiperazine (DKP) that is extensively oxidized. Here, we identify the BCM biosynthetic gene cluster, which shows that the core of BCM is biosynthesized by a cyclodipeptide synthase, and the oxidative modifications are introduced by five 2-oxoglutarate-dependent dioxygenases and one cytochrome P450 monooxygenase. The discovery of the gene cluster enabled the identification of BCM pathways encoded by the genomes of hundreds ofPseudomonas aeruginosaisolates distributed globally, and heterologous expression of the pathway fromP. aeruginosaSCV20265 demonstrated that the product is chemically identical to BCM produced byS. cinnamoneus. Overall, putative BCM gene clusters have been found in at least seven genera spanningActinobacteriaandProteobacteria(Alphaproteobacteria,Betaproteobacteria, andGammaproteobacteria). This represents a rare example of horizontal gene transfer of an intact biosynthetic gene cluster across such distantly related bacteria, and we show that these gene clusters are almost always associated with mobile genetic elements.IMPORTANCEBicyclomycin is the only natural product antibiotic that selectively inhibits the transcription termination factor Rho. This mechanism of action, combined with its proven biological safety and its activity against clinically relevant Gram-negative bacterial pathogens, makes it a very promising antibiotic candidate. Here, we report the identification of the bicyclomycin biosynthetic gene cluster in the known bicyclomycin-producing organismStreptomyces cinnamoneus, which will enable the engineered production of new bicyclomycin derivatives. The identification of this gene cluster also led to the discovery of hundreds of bicyclomycin pathways encoded in highly diverse bacteria, including in the opportunistic pathogenPseudomonas aeruginosa. This wide distribution of a complex biosynthetic pathway is very unusual and provides an insight into how a pathway for an antibiotic can be transferred between diverse bacteria.

2017 ◽  
Author(s):  
Natalia M. Vior ◽  
Rodney Lacret ◽  
Govind Chandra ◽  
Siobhán Dorai-Raj ◽  
Martin Trick ◽  
...  

ABSTRACTBicyclomycin (BCM) is a clinically promising antibiotic that is biosynthesised byStreptomyces cinnamoneusDSM 41675. BCM is structurally characterized by a core cyclo(L-Ile-L-Leu) 2,5-diketopiperazine (DKP) that is extensively oxidized. Here, we identify the BCM biosynthetic gene cluster, which shows that the core of BCM is biosynthesised by a cyclodipeptide synthase and the oxidative modifications are introduced by five 2-oxoglutarate-dependent dioxygenases and one cytochrome P450 monooxygenase. The discovery of the gene cluster enabled the identification of BCM pathways encoded in the genomes of hundreds ofPseudomonas aeruginosaisolates distributed globally, and heterologous expression of the pathway fromP. aeruginosaSCV20265 demonstrated that the product is chemically identical to BCM produced byS. cinnamoneus. Overall, putative BCM gene clusters have been found in at least seven genera spanningActinobacteriaandProteobacteria(Alpha-, Beta-andGamma-). This represents a rare example of horizontal gene transfer of an intact biosynthetic gene cluster across such distantly related bacteria, and we show that these gene clusters are almost always associated with mobile genetic elements.IMPORTANCEBicyclomycin is the only natural product antibiotic that selectively inhibits the transcription termination factor Rho. This mechanism of action, combined with its proven biological safety and its activity against clinically relevant Gram-negative bacterial pathogens, makes it a very promising antibiotic candidate. Here, we report the identification of the bicyclomycin biosynthetic gene cluster in the known producing organismStreptomyces cinnamoneus, which will enable the engineered production of new bicyclomycin derivatives. The identification of this gene cluster also led to the discovery of hundreds of bicyclomycin pathways encoded in highly diverse bacteria, including the opportunistic pathogenPseudomonas aeruginosa. This wide distribution of a complex biosynthetic pathway is very unusual, and provides an insight into how a pathway for an antibiotic can be transferred between diverse bacteria.


2014 ◽  
Vol 80 (16) ◽  
pp. 5028-5036 ◽  
Author(s):  
Kiyoko T. Miyamoto ◽  
Mamoru Komatsu ◽  
Haruo Ikeda

ABSTRACTMycosporines and mycosporine-like amino acids (MAAs), including shinorine (mycosporine-glycine-serine) and porphyra-334 (mycosporine-glycine-threonine), are UV-absorbing compounds produced by cyanobacteria, fungi, and marine micro- and macroalgae. These MAAs have the ability to protect these organisms from damage by environmental UV radiation. Although no reports have described the production of MAAs and the corresponding genes involved in MAA biosynthesis from Gram-positive bacteria to date, genome mining of the Gram-positive bacterial database revealed that two microorganisms belonging to the orderActinomycetales,Actinosynnema mirumDSM 43827 andPseudonocardiasp. strain P1, possess a gene cluster homologous to the biosynthetic gene clusters identified from cyanobacteria. When the two strains were grown in liquid culture,Pseudonocardiasp. accumulated a very small amount of MAA-like compound in a medium-dependent manner, whereasA. mirumdid not produce MAAs under any culture conditions, indicating that the biosynthetic gene cluster ofA. mirumwas in a cryptic state in this microorganism. In order to characterize these biosynthetic gene clusters, each biosynthetic gene cluster was heterologously expressed in an engineered host,Streptomyces avermitilisSUKA22. Since the resultant transformants carrying the entire biosynthetic gene cluster controlled by an alternative promoter produced mainly shinorine, this is the first confirmation of a biosynthetic gene cluster for MAA from Gram-positive bacteria. Furthermore,S. avermitilisSUKA22 transformants carrying the biosynthetic gene cluster for MAA ofA. mirumaccumulated not only shinorine and porphyra-334 but also a novel MAA. Structure elucidation revealed that the novel MAA is mycosporine-glycine-alanine, which substitutesl-alanine for thel-serine of shinorine.


2018 ◽  
Vol 85 (4) ◽  
Author(s):  
Jan Mareš ◽  
Jan Hájek ◽  
Petra Urajová ◽  
Andreja Kust ◽  
Jouni Jokela ◽  
...  

ABSTRACT Puwainaphycins (PUWs) and minutissamides (MINs) are structurally analogous cyclic lipopeptides possessing cytotoxic activity. Both types of compound exhibit high structural variability, particularly in the fatty acid (FA) moiety. Although a biosynthetic gene cluster responsible for synthesis of several PUW variants has been proposed in a cyanobacterial strain, the genetic background for MINs remains unexplored. Herein, we report PUW/MIN biosynthetic gene clusters and structural variants from six cyanobacterial strains. Comparison of biosynthetic gene clusters indicates a common origin of the PUW/MIN hybrid nonribosomal peptide synthetase and polyketide synthase. Surprisingly, the biosynthetic gene clusters encode two alternative biosynthetic starter modules, and analysis of structural variants suggests that initiation by each of the starter modules results in lipopeptides of differing lengths and FA substitutions. Among additional modifications of the FA chain, chlorination of minutissamide D was explained by the presence of a putative halogenase gene in the PUW/MIN gene cluster of Anabaena minutissima strain UTEX B 1613. We detected PUW variants bearing an acetyl substitution in Symplocastrum muelleri strain NIVA-CYA 644, consistent with an O-acetyltransferase gene in its biosynthetic gene cluster. The major lipopeptide variants did not exhibit any significant antibacterial activity, and only the PUW F variant was moderately active against yeast, consistent with previously published data suggesting that PUWs/MINs interact preferentially with eukaryotic plasma membranes. IMPORTANCE Herein, we deciphered the most important biosynthetic traits of a prominent group of bioactive lipopeptides. We reveal evidence for initiation of biosynthesis by two alternative starter units hardwired directly in the same gene cluster, eventually resulting in the production of a remarkable range of lipopeptide variants. We identified several unusual tailoring genes potentially involved in modifying the fatty acid chain. Careful characterization of these biosynthetic gene clusters and their diverse products could provide important insight into lipopeptide biosynthesis in prokaryotes. Some of the variants identified exhibit cytotoxic and antifungal properties, and some are associated with a toxigenic biofilm-forming strain. The findings may prove valuable to researchers in the fields of natural product discovery and toxicology.


2012 ◽  
Vol 78 (12) ◽  
pp. 4412-4419 ◽  
Author(s):  
Tim Kamber ◽  
Theresa A. Lansdell ◽  
Virginia O. Stockwell ◽  
Carol A. Ishimaru ◽  
Theo H. M. Smits ◽  
...  

ABSTRACTPantoea vagansC9-1 is a biocontrol strain that produces at least two antibiotics inhibiting the growth ofErwinia amylovora, the causal agent of fire blight disease of pear and apple. One antibiotic, herbicolin I, was purified from culture filtrates ofP. vagansC9-1 and determined to be 2-amino-3-(oxirane-2,3-dicarboxamido)-propanoyl-valine, also known asNß-epoxysuccinamoyl-DAP-valine. A plasposon library was screened for mutants that had lost the ability to produce herbicolin I. It was shown that mutants had reduced biocontrol efficacy in immature pear assays. The biosynthetic gene cluster inP. vagansC9-1 was identified by sequencing the flanking regions of the plasposon insertion sites. The herbicolin I biosynthetic gene cluster consists of 10 coding sequences (CDS) and is located on the 166-kb plasmid pPag2. Sequence comparisons identified orthologous gene clusters inPantoea agglomeransCU0119 andSerratia proteamaculans568. A low incidence of detection of the biosynthetic cluster in a collection of 45Pantoeaspp. from biocontrol, environmental, and clinical origins showed that this is a rare trait among the tested strains.


2021 ◽  
Vol 7 (7) ◽  
Author(s):  
Agustina Undabarrena ◽  
Ricardo Valencia ◽  
Andrés Cumsille ◽  
Leonardo Zamora-Leiva ◽  
Eduardo Castro-Nallar ◽  
...  

Natural products (NPs) are synthesized by biosynthetic gene clusters (BGCs), whose genes are involved in producing one or a family of chemically related metabolites. Advances in comparative genomics have been favourable for exploiting huge amounts of data and discovering previously unknown BGCs. Nonetheless, studying distribution patterns of novel BGCs and elucidating the biosynthesis of orphan metabolites remains a challenge. To fill this knowledge gap, our study developed a pipeline for high-quality comparative genomics for the actinomycete genus Rhodococcus , which is metabolically versatile, yet understudied in terms of NPs, leading to a total of 110 genomes, 1891 BGCs and 717 non-ribosomal peptide synthetases (NRPSs). Phylogenomic inferences showed four major clades retrieved from strains of several ecological habitats. BiG-SCAPE sequence similarity BGC networking revealed 44 unidentified gene cluster families (GCFs) for NRPS, which presented a phylogenomic-dependent evolution pattern, supporting the hypothesis of vertical gene transfer. As a proof of concept, we analysed in-depth one of our marine strains, Rhodococcus sp. H-CA8f, which revealed a unique BGC distribution within its phylogenomic clade, involved in producing a chloramphenicol-related compound. While this BGC is part of the most abundant and widely distributed NRPS GCF, corason analysis unveiled major differences regarding its genetic context, co-occurrence patterns and modularity. This BGC is composed of three sections, two well-conserved right/left arms flanking a very variable middle section, composed of nrps genes. The presence of two non-canonical domains in H-CA8f’s BGC may contribute to adding chemical diversity to this family of NPs. Liquid chromatography-high resolution MS and dereplication efforts retrieved a set of related orphan metabolites, the corynecins, which to our knowledge are reported here for the first time in Rhodococcus . Overall, our data provide insights to connect BGC uniqueness with orphan metabolites, by revealing key comparative genomic features supported by models of BGC distribution along phylogeny.


2021 ◽  
Vol 85 (3) ◽  
pp. 714-721
Author(s):  
Risa Takao ◽  
Katsuyuki Sakai ◽  
Hiroyuki Koshino ◽  
Hiroyuki Osada ◽  
Shunji Takahashi

ABSTRACT Recent advances in genome sequencing have revealed a variety of secondary metabolite biosynthetic gene clusters in actinomycetes. Understanding the biosynthetic mechanism controlling secondary metabolite production is important for utilizing these gene clusters. In this study, we focused on the kinanthraquinone biosynthetic gene cluster, which has not been identified yet in Streptomyces sp. SN-593. Based on chemical structure, 5 type II polyketide synthase gene clusters were listed from the genome sequence of Streptomyces sp. SN-593. Among them, a candidate gene cluster was selected by comparing the gene organization with grincamycin, which is synthesized through an intermediate similar to kinanthraquinone. We initially utilized a BAC library for subcloning the kiq gene cluster, performed heterologous expression in Streptomyces lividans TK23, and identified the production of kinanthraquinone and kinanthraquinone B. We also found that heterologous expression of kiqA, which belongs to the DNA-binding response regulator OmpR family, dramatically enhanced the production of kinanthraquinones.


Life ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 758
Author(s):  
Xiaohe Jin ◽  
Yunlong Zhang ◽  
Ran Zhang ◽  
Kathy-Uyen Nguyen ◽  
Jonathan S. Lindsey ◽  
...  

Tolyporphins A–R are unusual tetrapyrrole macrocycles produced by the non-axenic filamentous cyanobacterium HT-58-2. A putative biosynthetic gene cluster for biosynthesis of tolyporphins (here termed BGC-1) was previously identified in the genome of HT-58-2. Here, homology searching of BGC-1 in HT-58-2 led to identification of similar BGCs in seven other filamentous cyanobacteria, including strains Nostoc sp. 106C, Nostoc sp. RF31YmG, Nostoc sp. FACHB-892, Brasilonema octagenarum UFV-OR1, Brasilonema octagenarum UFV-E1, Brasilonema sennae CENA114 and Oculatella sp. LEGE 06141, suggesting their potential for tolyporphins production. A similar gene cluster (BGC-2) also was identified unexpectedly in HT-58-2. Tolyporphins BGCs were not identified in unicellular cyanobacteria. Phylogenetic analysis based on 16S rRNA and a common component of the BGCs, TolD, points to a close evolutionary history between each strain and their respective tolyporphins BGC. Though identified with putative tolyporphins BGCs, examination of pigments extracted from three cyanobacteria has not revealed the presence of tolyporphins. Overall, the identification of BGCs and potential producers of tolyporphins presents a collection of candidate cyanobacteria for genetic and biochemical analysis pertaining to these unusual tetrapyrrole macrocycles.


Author(s):  
Rebecca Devine ◽  
Hannah McDonald ◽  
Zhiwei Qin ◽  
Corinne Arnold ◽  
Katie Noble ◽  
...  

AbstractThe formicamycins are promising antibiotics with potent activity against Gram-positive pathogens including VRE and MRSA and display a high barrier to selection of resistant isolates. They were first identified in Streptomyces formicae KY5, which produces the formicamycins at low levels on solid agar but not in liquid culture, thus hindering further investigation of these promising antibacterial compounds. We hypothesised that by understanding the organisation and regulation of the for biosynthetic gene cluster, we could rationally refactor the cluster to increase production levels. Here we report that the for biosynthetic gene cluster consists of 24 genes expressed on nine transcripts. Seven of these transcripts, including those containing all the major biosynthetic genes, are repressed by the MarR-regulator ForJ which also controls the expression of the ForGF two-component system that initiates biosynthesis. A third cluster-situated regulator, ForZ, autoregulates and controls production of the putative MFS transporter ForAA. Consistent with these findings, deletion of forJ increased formicamycin biosynthesis 5-fold, while over-expression of forGF in the ΔforJ background increased production 10-fold compared to the wild-type. De-repression by deleting forJ also switched on biosynthesis in liquid-culture and induced the production of two novel formicamycin congeners. By combining mutations in regulatory and biosynthetic genes, six new biosynthetic precursors with antibacterial activity were also isolated. This work demonstrates the power of synthetic biology for the rational redesign of antibiotic biosynthetic gene clusters both to engineer strains suitable for fermentation in large scale bioreactors and to generate new molecules.ImportanceAntimicrobial resistance is a growing threat as existing antibiotics become increasingly ineffective against drug resistant pathogens. Here we determine the transcriptional organisation and regulation of the gene cluster encoding biosynthesis of the formicamycins, promising new antibiotics with activity against drug resistant bacteria. By exploiting this knowledge, we construct stable mutant strains which over-produce these molecules in both liquid and solid culture whilst also making some new compound variants. This will facilitate large scale purification of these molecules for further study including in vivo experiments and the elucidation of their mechanism of action. Our work demonstrates that understanding the regulation of natural product biosynthetic pathways can enable rational improvement of the producing strains.


2013 ◽  
Vol 79 (23) ◽  
pp. 7298-7304 ◽  
Author(s):  
Chengwei Liu ◽  
Atsushi Minami ◽  
Motoyoshi Noike ◽  
Hiroaki Toshima ◽  
Hideaki Oikawa ◽  
...  

ABSTRACTWe recently reported the function ofpaxD, which is involved in the paxilline (compound 1) biosynthetic gene cluster inPenicillium paxilli. Recombinant PaxD catalyzed a stepwise regular-type diprenylation at the 21 and 22 positions of compound 1 with dimethylallyl diphosphate (DMAPP) as the prenyl donor. In this study,atmD, which is located in the aflatrem (compound 2) biosynthetic gene cluster inAspergillus flavusand encodes an enzyme with 32% amino acid identity to PaxD, was characterized using recombinant enzyme. When compound 1 and DMAPP were used as substrates, two major products and a trace of minor product were formed. The structures of the two major products were determined to be reversely monoprenylated compound 1 at either the 20 or 21 position. Because compound 2 and β-aflatrem (compound 3), both of which are compound 1-related compounds produced byA. flavus, have the same prenyl moiety at the 20 and 21 position, respectively, AtmD should catalyze the prenylation in compound 2 and 3 biosynthesis. More importantly and surprisingly, AtmD accepted paspaline (compound 4), which is an intermediate of compound 1 biosynthesis that has a structure similar to that of compound 1, and catalyzed a regular monoprenylation of compound 4 at either the 21 or 22 position, though the reverse prenylation was observed with compound 1. This suggests that fungal indole diterpene prenyltransferases have the potential to alter their position and regular/reverse specificities for prenylation and could be applicable for the synthesis of industrially useful compounds.


2015 ◽  
Vol 197 (15) ◽  
pp. 2536-2544 ◽  
Author(s):  
Letizia Lo Grasso ◽  
Sonia Maffioli ◽  
Margherita Sosio ◽  
Mervyn Bibb ◽  
Anna Maria Puglia ◽  
...  

ABSTRACTThe actinomyceteNonomuraeasp. strain ATCC 39727 produces the glycopeptide A40926, the precursor of dalbavancin. Biosynthesis of A40926 is encoded by thedbvgene cluster, which contains 37 protein-coding sequences that participate in antibiotic biosynthesis, regulation, immunity, and export. In addition to the positive regulatory protein Dbv4, the A40926-biosynthetic gene cluster encodes two additional putative regulators, Dbv3 and Dbv6. Independent mutations in these genes, combined with bioassays and liquid chromatography-mass spectrometry (LC-MS) analyses, demonstrated that Dbv3 and Dbv4 are both required for antibiotic production, while inactivation ofdbv6had no effect. In addition, overexpression ofdbv3led to higher levels of A40926 production. Transcriptional and quantitative reverse transcription (RT)-PCR analyses showed that Dbv4 is essential for the transcription of two operons,dbv14-dbv8anddbv30-dbv35, while Dbv3 positively controls the expression of four monocistronic transcription units (dbv4,dbv29,dbv36, anddbv37) and of six operons (dbv2-dbv1,dbv14-dbv8,dbv17-dbv15,dbv21-dbv20,dbv24-dbv28, anddbv30-dbv35). We propose a complex and coordinated model of regulation in which Dbv3 directly or indirectly activates transcription ofdbv4and controls biosynthesis of 4-hydroxyphenylglycine and the heptapeptide backbone, A40926 export, and some tailoring reactions (mannosylation and hexose oxidation), while Dbv4 directly regulates biosynthesis of 3,5-dihydroxyphenylglycine and other tailoring reactions, including the four cross-links, halogenation, glycosylation, and acylation.IMPORTANCEThis report expands knowledge of the regulatory mechanisms used to control the biosynthesis of the glycopeptide antibiotic A40926 in the actinomyceteNonomuraeasp. strain ATCC 39727. A40926 is the precursor of dalbavancin, approved for treatment of skin infections by Gram-positive bacteria. Therefore, understanding the regulation of its biosynthesis is also of industrial importance. So far, the regulatory mechanisms used to control two other similar glycopeptides (balhimycin and teicoplanin) have been elucidated, and beyond a common step, different clusters seem to have devised different strategies to control glycopeptide production. Thus, our work provides one more example of the pitfalls of deducing regulatory roles from bioinformatic analyses only, even when analyzing gene clusters directing the synthesis of structurally related compounds.


Sign in / Sign up

Export Citation Format

Share Document