scholarly journals Cyanochelins, an overlooked class of widely distributed cyanobacterial siderophores, discovered by silent gene cluster awakening.

Author(s):  
Tomáš Galica ◽  
Nicola Borbone ◽  
Jan Mareš ◽  
Andreja Kust ◽  
Alessia Caso ◽  
...  

Cyanobacteria require iron for growth and often inhabit iron-limited habitats, yet only a few siderophores are known to be produced by them. We report that cyanobacterial genomes frequently encode PKS/NRPS biosynthetic pathways for synthesis of lipopeptides featuring β -hydroxyaspartate ( β -OH-Asp), a residue known to be involved in iron chelation. Iron starvation triggered the synthesis of β -OH-Asp lipopeptides in the cyanobacteria Rivularia sp. PCC 7116, Leptolyngbya sp. NIES-3755 and Rubidibacter lacunae KORDI 51-2. The induced compounds were confirmed to bind iron by mass spectrometry and were capable of Fe 3+ to Fe 2+ photoreduction accompanied by their cleavage, when exposed to sunlight. The siderophore from Rivularia , named cyanochelin A, was structurally characterized by MS and NMR and contains a hydrophobic tail bound to phenolate and oxazole moieties followed by five amino acids including two modified aspartate residues for iron chelation. Phylogenomic analysis revealed twenty-six additional cyanochelin-like gene clusters across a broad range of cyanobacterial lineages. Our data suggests that cyanochelins and related compounds are widespread, β -OH-Asp-featuring cyanobacterial siderophores produced by phylogenetically distant species upon iron starvation. Production of photolabile siderophores by phototrophic cyanobacteria raises questions to what extent the compounds facilitate iron monopolization by the producer or provide Fe 2+ for the whole microbial community via photoreduction. Significance: All living organisms depend on iron as an essential cofactor for indispensable enzymes. However, the sources of bioavailable iron are often limited. To face this problem, microorganisms synthesize low molecular weight metabolites capable of iron scavenging - the siderophores. Although cyanobacteria inhabit the majority of the Earth's ecosystems, their repertoire of known siderophores is remarkably poor. Their genomes are known to harbour a rich variety of gene clusters with unknown function. Here we report the awakening of a widely distributed class of silent gene clusters by iron starvation, yielding cyanochelins, β -hydroxy aspartate lipopeptides involved in iron acquisition. Our results expand the limited arsenal of known cyanobacterial siderophores and propose products with ecological function to a number of previously silent gene clusters.

2012 ◽  
Vol 40 (6) ◽  
pp. 1456-1462 ◽  
Author(s):  
Sylvie Rebuffat

Probably the oldest and most widespread antimicrobial strategy in living organisms is the use of antimicrobial peptides. Bacteria secrete such defence peptides, termed bacteriocins, that they use for microbial competitions. Microcins are bacteriocins of less than 10 kDa produced by Escherichia coli and related enterobacteria through the ribosomal pathway. They are synthesized as linear precursors, which can further undergo complex post-translational modifications resulting from dedicated maturation enzymes encoded in the microcin gene clusters, and are processed by proteolytic cleavage. Microcins exert potent bactericidal activities that use subtle and clever mechanisms to cross outer and inner membranes of Gram-negative bacteria. To cross the outer membrane, siderophore-microcins hijack receptors involved in iron acquisition. The lasso-peptide microcin J25, which is characterized by a knotted arrangement where the C-terminal tail is threaded through an N-terminal macrolactam ring, uses a hydroxamate siderophore receptor and the inner-membrane protein SbmA for import in sensitive bacteria, where it inhibits bacterial transcription through binding to RNAP (RNA polymerase). Microcin C produced as a heptapeptide adenylate, requires an outer-membrane porin and an inner-membrane ABC (ATP-binding-cassette) transporter to reach the cytoplasm of target bacteria, where it is processed by proteases into a non-hydrolysable aspartyl-adenylate analogue. Therefore, despite showing different killing mechanisms and the absence of any structural homology, microcins have the common characteristic to use Trojan horse strategies to destroy their competitors. They offer new and promising tracks for further design and engineering of novel efficient antibiotics.


2020 ◽  
Vol 88 (8) ◽  
Author(s):  
Danelle R. Weakland ◽  
Sara N. Smith ◽  
Bailey Bell ◽  
Ashootosh Tripathi ◽  
Harry L. T. Mobley

ABSTRACT Serratia marcescens is a bacterium frequently found in the environment, but over the last several decades it has evolved into a concerning clinical pathogen, causing fatal bacteremia. To establish such infections, pathogens require specific nutrients; one very limited but essential nutrient is iron. We sought to characterize the iron acquisition systems in S. marcescens isolate UMH9, which was recovered from a clinical bloodstream infection. Using RNA sequencing (RNA-seq), we identified two predicted siderophore gene clusters (cbs and sch) that were regulated by iron. Mutants were constructed to delete each iron acquisition locus individually and in conjunction, generating both single and double mutants for the putative siderophore systems. Mutants lacking the sch gene cluster lost their iron-chelating ability as quantified by the chrome azurol S (CAS) assay, whereas the cbs mutant retained wild-type activity. Mass spectrometry-based analysis identified the chelating siderophore to be serratiochelin, a siderophore previously identified in Serratia plymuthica. Serratiochelin-producing mutants also displayed a decreased growth rate under iron-limited conditions created by dipyridyl added to LB medium. Additionally, mutants lacking serratiochelin were significantly outcompeted during cochallenge with wild-type UMH9 in the kidneys and spleen after inoculation via the tail vein in a bacteremia mouse model. This result was further confirmed by an independent challenge, suggesting that serratiochelin is required for full S. marcescens pathogenesis in the bloodstream. Nine other clinical isolates have at least 90% protein identity to the UMH9 serratiochelin system; therefore, our results are broadly applicable to emerging clinical isolates of S. marcescens causing bacteremia.


2015 ◽  
Vol 112 (37) ◽  
pp. E5208-E5217 ◽  
Author(s):  
Dervla T. Isaac ◽  
Rita K. Laguna ◽  
Nicole Valtz ◽  
Ralph R. Isberg

Iron is essential for the growth and virulence of most intravacuolar pathogens. The mechanisms by which microbes bypass host iron restriction to gain access to this metal across the host vacuolar membrane are poorly characterized. In this work, we identify a unique intracellular iron acquisition strategy used byLegionella pneumophila.The bacterial Icm/Dot (intracellular multiplication/defect in organelle trafficking) type IV secretion system targets the bacterial-derived MavN (more regions allowing vacuolar colocalization N) protein to the surface of theLegionella-containing vacuole where this putative transmembrane protein facilitates intravacuolar iron acquisition. TheΔmavNmutant exhibits a transcriptional iron-starvation signature before its growth is arrested during the very early stages of macrophage infection. This intracellular growth defect is rescued only by the addition of excess exogenous iron to the culture medium and not a variety of other metals. Consistent with MavN being a translocated substrate that plays an exclusive role during intracellular growth, the mutant shows no defect for growth in broth culture, even under severe iron-limiting conditions. Putative iron-binding residues within the MavN protein were identified, and point mutations in these residues resulted in defects specific for intracellular growth that are indistinguishable from the ΔmavNmutant. This model of a bacterial protein inserting into host membranes to mediate iron transport provides a paradigm for how intravacuolar pathogens can use virulence-associated secretion systems to manipulate and acquire host iron.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Aleksey E. Kuznetsov

Abstract Various (metallo)porphyrins and related compounds have been intensively investigated by different research groups due to their extremely important role in living organisms along with their versatile applications in technology. The design of novel porphyrinoids by core-modification, or substitution of pyrrole nitrogens, with the elements of other groups of the Periodic Table has been considered as a highly promising methodology for tuning structures and properties of porphyrinoids and thus opening new possible applications for them. Much effort has been given to the modifications of the porphyrin core with elements of the main groups, namely O, S, Se (chalcogens), and the heavier congener of nitrogen, phosphorus. In general, the porphyrin core modification by replacing nitrogens with heteroatoms is a promising and effective strategy for obtaining new compounds with unusual structures and properties (optical, electrochemical, coordinating, etc.) as well as reactivity. These novel molecules can also be employed as promising building or construction blocks in various applications in the nanotechnology area.


2001 ◽  
Vol 183 (9) ◽  
pp. 2779-2784 ◽  
Author(s):  
Hirokazu Katoh ◽  
Natsu Hagino ◽  
Arthur R. Grossman ◽  
Teruo Ogawa

ABSTRACT Genes encoding polypeptides of an ATP binding cassette (ABC)-type ferric iron transporter that plays a major role in iron acquisition inSynechocystis sp. strain PCC 6803 were identified. These genes are slr1295, slr0513, slr0327, and recently reportedsll1878 (Katoh et al., J. Bacteriol. 182:6523–6524, 2000) and were designated futA1, futA2, futB, andfutC, respectively, for their involvement in ferric iron uptake. Inactivation of these genes individually or futA1and futA2 together greatly reduced the activity of ferric iron uptake in cells grown in complete medium or iron-deprived medium. All the fut genes are expressed in cells grown in complete medium, and expression was enhanced by iron starvation. ThefutA1 and futA2 genes appear to encode periplasmic proteins that play a redundant role in iron binding. The deduced products of futB and futC genes contain nucleotide-binding motifs and belong to the ABC transporter family of inner-membrane-bound and membrane-associated proteins, respectively. These results and sequence similarities among the four genes suggest that the Fut system is related to the Sfu/Fbp family of iron transporters. Inactivation of slr1392, a homologue offeoB in Escherichia coli, greatly reduced the activity of ferrous iron transport. This system is induced by intracellular low iron concentrations that are achieved in cells exposed to iron-free medium or in the fut-less mutants grown in complete medium.


2008 ◽  
pp. 1-12 ◽  
Author(s):  
Axel A. Brakhage ◽  
Julia Schuemann ◽  
Sebastian Bergmann ◽  
Kirstin Scherlach ◽  
Volker Schroeckh ◽  
...  

Marine Drugs ◽  
2019 ◽  
Vol 17 (8) ◽  
pp. 446 ◽  
Author(s):  
Jing Yu ◽  
Huan Han ◽  
Xianyan Zhang ◽  
Chuanteng Ma ◽  
Chunxiao Sun ◽  
...  

Overexpression of the global regulator LaeA in a marine-derived fungal strain of Penicillium dipodomyis YJ-11 induced obvious morphological changes and metabolic variations. Further chemical investigation of the mutant strain afforded a series of sorbicillinoids including two new ones named 10,11-dihydrobislongiquinolide (1) and 10,11,16,17-tetrahydrobislongiquinolide (2), as well as four known analogues, bislongiquinolide (3), 16,17-dihydrobislongiquinolide (4), sohirnone A (5), and 2′,3′-dihydrosorbicillin (6). The results support that the global regulator LaeA is a useful tool in activating silent gene clusters in Penicillium strains to obtain previously undiscovered compounds.


Microbiome ◽  
2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Wei Lin ◽  
Wensi Zhang ◽  
Greig A. Paterson ◽  
Qiyun Zhu ◽  
Xiang Zhao ◽  
...  

Abstract Background The discovery of membrane-enclosed, metabolically functional organelles in Bacteria has transformed our understanding of the subcellular complexity of prokaryotic cells. Biomineralization of magnetic nanoparticles within magnetosomes by magnetotactic bacteria (MTB) is a fascinating example of prokaryotic organelles. Magnetosomes, as nano-sized magnetic sensors in MTB, facilitate cell navigation along the local geomagnetic field, a behaviour referred to as magnetotaxis or microbial magnetoreception. Recent discovery of novel MTB outside the traditionally recognized taxonomic lineages suggests that MTB diversity across the domain Bacteria are considerably underestimated, which limits understanding of the taxonomic distribution and evolutionary origin of magnetosome organelle biogenesis. Results Here, we perform the most comprehensive metagenomic analysis available of MTB communities and reconstruct metagenome-assembled MTB genomes from diverse ecosystems. Discovery of MTB in acidic peatland soils suggests widespread MTB occurrence in waterlogged soils in addition to subaqueous sediments and water bodies. A total of 168 MTB draft genomes have been reconstructed, which represent nearly a 3-fold increase over the number currently available and more than double the known MTB species at the genome level. Phylogenomic analysis reveals that these genomes belong to 13 Bacterial phyla, six of which were previously not known to include MTB. These findings indicate a much wider taxonomic distribution of magnetosome organelle biogenesis across the domain Bacteria than previously thought. Comparative genome analysis reveals a vast diversity of magnetosome gene clusters involved in magnetosomal biogenesis in terms of gene content and synteny residing in distinct taxonomic lineages. Phylogenetic analyses of core magnetosome proteins in this largest available and taxonomically diverse dataset support an unexpectedly early evolutionary origin of magnetosome biomineralization, likely ancestral to the origin of the domain Bacteria. Conclusions These findings expand the taxonomic and phylogenetic diversity of MTB across the domain Bacteria and shed new light on the origin and evolution of microbial magnetoreception. Potential biogenesis of the magnetosome organelle in the close descendants of the last bacterial common ancestor has important implications for our understanding of the evolutionary history of bacterial cellular complexity and emphasizes the biological significance of the magnetosome organelle.


2009 ◽  
Vol 75 (12) ◽  
pp. 4194-4196 ◽  
Author(s):  
Anja Wallner ◽  
Michael Blatzer ◽  
Markus Schrettl ◽  
Bettina Sarg ◽  
Herbert Lindner ◽  
...  

ABSTRACT Iron is an essential metal for virtually all organisms. Iron acquisition is well characterized for various organisms, whereas intracellular iron distribution is poorly understood. In contrast to bacteria, plants, and animals, most fungi lack ferritin-mediated iron storage but possess an intracellular siderophore shown to be involved in iron storage. Here we demonstrate that deficiency in the intracellular siderophore ferricrocin causes iron starvation in conidia of Aspergillus fumigatus, demonstrating that ferricrocin is also involved in intra- and transcellular iron distribution. Thus, ferricrocin represents the first intracellular iron transporter identified in any organism.


Sign in / Sign up

Export Citation Format

Share Document