scholarly journals Up against the Wall: Is Yeast Cell Wall Integrity Ensured by Mechanosensing in Plasma Membrane Microdomains?

2014 ◽  
Vol 81 (3) ◽  
pp. 806-811 ◽  
Author(s):  
Christian Kock ◽  
Yves F. Dufrêne ◽  
Jürgen J. Heinisch

ABSTRACTYeast cell wall integrity (CWI) signaling serves as a model of the regulation of fungal cell wall synthesis and provides the basis for the development of antifungal drugs. A set of five membrane-spanning sensors (Wsc1 to Wsc3, Mid2, and Mtl1) detect cell surface stress and commence the signaling pathway upon perturbations of either the cell wall structure or the plasma membrane. We here summarize the latest advances in the structure/function relationship primarily of the Wsc1 sensor and critically review the evidence that it acts as a mechanosensor. The relevance and physiological significance of the information obtained for the function of the other CWI sensors, as well as expected future developments, are discussed.

2016 ◽  
Vol 18 (9) ◽  
pp. 1251-1267 ◽  
Author(s):  
Christian Kock ◽  
Henning Arlt ◽  
Christian Ungermann ◽  
Jürgen J. Heinisch

2009 ◽  
Vol 84 (4) ◽  
pp. 269-276 ◽  
Author(s):  
Mizuho Sekiya ◽  
Satoru Nogami ◽  
Yoshikazu Ohya

FEBS Letters ◽  
2013 ◽  
Vol 587 (22) ◽  
pp. 3675-3680 ◽  
Author(s):  
José M. Rodríguez-Peña ◽  
Sonia Díez-Muñiz ◽  
Clara Bermejo ◽  
César Nombela ◽  
Javier Arroyo

2010 ◽  
Vol 284 (3) ◽  
pp. 217-229 ◽  
Author(s):  
Sabrina Wilk ◽  
Janina Wittland ◽  
Andreas Thywissen ◽  
Hans-Peter Schmitz ◽  
Jürgen J. Heinisch

Pharmaceutics ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 314 ◽  
Author(s):  
Jakub Suchodolski ◽  
Daria Derkacz ◽  
Jakub Muraszko ◽  
Jarosław J. Panek ◽  
Aneta Jezierska ◽  
...  

Recognizing the β-glucan component of the Candida albicans cell wall is a necessary step involved in host immune system recognition. Compounds that result in exposed β-glucan recognizable to the immune system could be valuable antifungal drugs. Antifungal development is especially important because fungi are becoming increasingly drug resistant. This study demonstrates that lipopeptide, surfactin, unmasks β-glucan when the C. albicans cells lack ergosterol. This observation also holds when ergosterol is depleted by fluconazole. Surfactin does not enhance the effects of local chitin accumulation in the presence of fluconazole. Expression of the CHS3 gene, encoding a gene product resulting in 80% of cellular chitin, is downregulated. C. albicans exposure to fluconazole changes the composition and structure of the fungal plasma membrane. At the same time, the fungal cell wall is altered and remodeled in a way that makes the fungi susceptible to surfactin. In silico studies show that surfactin can form a complex with β-glucan. Surfactin forms a less stable complex with chitin, which in combination with lowering chitin synthesis, could be a second anti-fungal mechanism of action of this lipopeptide.


2016 ◽  
Vol 291 (11) ◽  
pp. 5461-5472 ◽  
Author(s):  
Esmeralda Alonso-Rodríguez ◽  
Pablo Fernández-Piñar ◽  
Almudena Sacristán-Reviriego ◽  
María Molina ◽  
Humberto Martín

2020 ◽  
Vol 21 (3) ◽  
pp. 265-283 ◽  
Author(s):  
João Henrique T.M. Fabri ◽  
Marina C. Rocha ◽  
Iran Malavazi

:The cell wall (CW) and plasma membrane are fundamental structures that define cell shape and support different cellular functions. In pathogenic fungi, such as Aspegillus fumigatus, they not only play structural roles but are also important for virulence and immune recognition. Both the CW and the plasma membrane remain as attractive drug targets to treat fungal infections, such as the Invasive Pulmonary Aspergillosis (IPA), a disease associated with high morbimortality in immunocompromised individuals. The low efficiency of echinocandins that target the fungal CW biosynthesis, the occurrence of environmental isolates resistant to azoles such as voriconazole and the known drawbacks associated with amphotericin toxicity foster the urgent need for fungal-specific drugable targets and/or more efficient combinatorial therapeutic strategies. Reverse genetic approaches in fungi unveil that perturbations of the CW also render cells with increased susceptibility to membrane disrupting agents and vice-versa. However, how the fungal cells simultaneously cope with perturbation in CW polysaccharides and cell membrane proteins to allow morphogenesis is scarcely known. Here, we focus on current information on how the main signaling pathways that maintain fungal cell wall integrity, such as the Cell Wall Integrity and the High Osmolarity Glycerol pathways, in different species often cross-talk to regulate the synthesis of molecules that comprise the plasma membrane, especially sphingolipids, ergosterol and phospholipids to promote functioning of both structures concomitantly and thus, cell viability. We propose that the conclusions drawn from other organisms are the foundations to point out experimental lines that can be endeavored in A. fumigatus.


2018 ◽  
Vol 23 (12) ◽  
pp. 988-997 ◽  
Author(s):  
Nguyen Thi Minh Viet ◽  
Duong Long Duy ◽  
Kazuhiro Saito ◽  
Kaoru Irie ◽  
Yasuyuki Suda ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document