scholarly journals Thermostable Alcohol Dehydrogenase from Thermococcus kodakarensis KOD1 for Enantioselective Bioconversion of Aromatic Secondary Alcohols

2013 ◽  
Vol 79 (7) ◽  
pp. 2209-2217 ◽  
Author(s):  
Xi Wu ◽  
Chong Zhang ◽  
Izumi Orita ◽  
Tadayuki Imanaka ◽  
Toshiaki Fukui ◽  
...  

ABSTRACTA novel thermostable alcohol dehydrogenase (ADH) showing activity toward aromatic secondary alcohols was identified from the hyperthermophilic archaeonThermococcus kodakarensisKOD1 (TkADH). The gene,tk0845, which encodes an aldo-keto reductase, was heterologously expressed inEscherichia coli. The enzyme was found to be a monomer with a molecular mass of 31 kDa. It was highly thermostable with an optimal temperature of 90°C and a half-life of 4.5 h at 95°C. The apparentKmvalues for the cofactors NAD(P)+and NADPH were similar within a range of 66 to 127 μM.TkADH preferred secondary alcohols and accepted various ketones and aldehydes as substrates. Interestingly, the enzyme could oxidize 1-phenylethanol and its derivatives having substituents at themetaandparapositions with high enantioselectivity, yielding the corresponding (R)-alcohols with optical purities of greater than 99.8% enantiomeric excess (ee).TkADH could also reduce 2,2,2-trifluoroacetophenone to (R)-2,2,2-trifluoro-1-phenylethanol with high enantioselectivity (>99.6% ee). Furthermore, the enzyme showed high resistance to organic solvents and was particularly highly active in the presence of H2O–20% 2-propanol and H2O–50%n-hexane orn-octane. This ADH is expected to be a useful tool for the production of aromatic chiral alcohols.

mBio ◽  
2019 ◽  
Vol 10 (4) ◽  
Author(s):  
Takahiro Shimosaka ◽  
Kira S. Makarova ◽  
Eugene V. Koonin ◽  
Haruyuki Atomi

ABSTRACT Dephospho-coenzyme A (dephospho-CoA) kinase (DPCK) catalyzes the ATP-dependent phosphorylation of dephospho-CoA, the final step in coenzyme A (CoA) biosynthesis. DPCK has been identified and characterized in bacteria and eukaryotes but not in archaea. The hyperthermophilic archaeon Thermococcus kodakarensis encodes two homologs of bacterial DPCK and the DPCK domain of eukaryotic CoA synthase, TK1334 and TK2192. We purified the recombinant TK1334 and TK2192 proteins and found that they lacked DPCK activity. Bioinformatic analyses showed that, in several archaea, the uncharacterized gene from arCOG04076 protein is fused with the gene for phosphopantetheine adenylyltransferase (PPAT), which catalyzes the reaction upstream of the DPCK reaction in CoA biosynthesis. This observation suggested that members of arCOG04076, both fused to PPAT and standalone, could be the missing archaeal DPCKs. We purified the recombinant TK1697 protein, a standalone member of arCOG04076 from T. kodakarensis, and demonstrated its GTP-dependent DPCK activity. Disruption of the TK1697 resulted in CoA auxotrophy, indicating that TK1697 encodes a DPCK that contributes to CoA biosynthesis in T. kodakarensis. TK1697 homologs are widely distributed in archaea, suggesting that the arCOG04076 protein represents a novel family of DPCK that is not homologous to bacterial and eukaryotic DPCKs but is distantly related to bacterial and eukaryotic thiamine pyrophosphokinases. We also constructed and characterized gene disruption strains of TK0517 and TK2128, homologs of bifunctional phosphopantothenoylcysteine synthetase-phosphopantothenoylcysteine decarboxylase and PPAT, respectively. Both strains displayed CoA auxotrophy, indicating their contribution to CoA biosynthesis. Taken together with previous studies, the results experimentally validate the entire CoA biosynthesis pathway in T. kodakarensis. IMPORTANCE CoA is utilized in a wide range of metabolic pathways, and its biosynthesis is essential for all life. Pathways for CoA biosynthesis in bacteria and eukaryotes have been established. In archaea, however, the enzyme that catalyzes the final step in CoA biosynthesis, dephospho-CoA kinase (DPCK), had not been identified. In the present study, bioinformatic analyses identified a candidate for the DPCK in archaea, which was biochemically and genetically confirmed in the hyperthermophilic archaeon Thermococcus kodakarensis. Genetic analyses on genes presumed to encode bifunctional phosphopantothenoylcysteine synthetase-phosphopantothenoylcysteine decarboxylase and phosphopantetheine adenylyltransferase confirmed their involvement in CoA biosynthesis. Taken together with previous studies, the results reveal the entire pathway for CoA biosynthesis in a single archaeon and provide insight into the different mechanisms of CoA biosynthesis and their distribution in nature.


2017 ◽  
Vol 199 (19) ◽  
Author(s):  
Shin-ichi Hachisuka ◽  
Takaaki Sato ◽  
Haruyuki Atomi

ABSTRACT NAD+ is an important cofactor for enzymatic oxidation reactions in all living organisms, including (hyper)thermophiles. However, NAD+ is susceptible to thermal degradation at high temperatures. It can thus be expected that (hyper)thermophiles harbor mechanisms that maintain in vivo NAD+ concentrations and possibly remove and/or reuse undesirable degradation products of NAD+. Here we confirmed that at 85°C, thermal degradation of NAD+ results mostly in the generation of nicotinamide and ADP-ribose, the latter known to display toxicity by spontaneously linking to proteins. The hyperthermophilic archaeon Thermococcus kodakarensis possesses a putative ADP-ribose pyrophosphatase (ADPR-PPase) encoded by the TK2284 gene. ADPR-PPase hydrolyzes ADP-ribose to ribose 5-phosphate (R5P) and AMP. The purified recombinant TK2284 protein exhibited activity toward ADP-ribose as well as ADP-glucose. Kinetic analyses revealed a much higher catalytic efficiency toward ADP-ribose, suggesting that ADP-ribose was the physiological substrate. To gain insight into the physiological function of TK2284, a TK2284 gene disruption strain was constructed and examined. Incubation of NAD+ in the cell extract of the mutant strain at 85°C resulted in higher ADP-ribose accumulation and lower AMP production compared with those in experiments with the host strain cell extract. The mutant strain also exhibited lower cell yield and specific growth rates in a synthetic amino acid medium compared with those of the host strain. The results obtained here suggest that the ADPR-PPase in T. kodakarensis is responsible for the cleavage of ADP-ribose to R5P and AMP, providing a means to utilize the otherwise dead-end product of NAD+ breakdown. IMPORTANCE Hyperthermophilic microorganisms living under high temperature conditions should have mechanisms that deal with the degradation of thermolabile molecules. NAD+ is an important cofactor for enzymatic oxidation reactions and is susceptible to thermal degradation to ADP-ribose and nicotinamide. Here we show that an ADP-ribose pyrophosphatase homolog from the hyperthermophilic archaeon Thermococcus kodakarensis converts the detrimental ADP-ribose to ribose 5-phosphate and AMP, compounds that can be directed to central carbon metabolism. This physiological role for ADP-ribose pyrophosphatases might be universal in hyperthermophiles, as their homologs are widely distributed among both hyperthermophilic bacteria and archaea.


2006 ◽  
Vol 72 (1) ◽  
pp. 233-238 ◽  
Author(s):  
Ronnie Machielsen ◽  
Agustinus R. Uria ◽  
Servé W. M. Kengen ◽  
John van der Oost

ABSTRACT The gene encoding a novel alcohol dehydrogenase that belongs to the aldo-keto reductase superfamily has been identified in the hyperthermophilic archaeon Pyrococcus furiosus. The gene, referred to as adhD, was functionally expressed in Escherichia coli and subsequently purified to homogeneity. The enzyme has a monomeric conformation with a molecular mass of 32 kDa. The catalytic activity of the enzyme increases up to 100°C, and a half-life value of 130 min at this temperature indicates its high thermostability. AdhD exhibits a broad substrate specificity with, in general, a preference for the reduction of ketones (pH optimum, 6.1) and the oxidation of secondary alcohols (pH optimum, 8.8). Maximal specific activities were detected with 2,3-butanediol (108.3 U/mg) and diacetyl-acetoin (22.5 U/mg) in the oxidative and reductive reactions, respectively. Gas chromatrography analysis indicated that AdhD produced mainly (S)-2-pentanol (enantiomeric excess, 89%) when 2-pentanone was used as substrate. The physiological role of AdhD is discussed.


2019 ◽  
Vol 201 (21) ◽  
Author(s):  
Akira Hirata ◽  
Takeo Suzuki ◽  
Tomoko Nagano ◽  
Daishiro Fujii ◽  
Mizuki Okamoto ◽  
...  

ABSTRACT tRNA m2G10/m22G10 methyltransferase (archaeal Trm11) methylates the 2-amino group in guanosine at position 10 in tRNA and forms N2,N2-dimethylguanosine (m22G10) via N2-methylguanosine (m2G10). We determined the complete sequence of tRNATrp, one of the substrate tRNAs for archaeal Trm11 from Thermococcus kodakarensis, a hyperthermophilic archaeon. Liquid chromatography/mass spectrometry following enzymatic digestion of tRNATrp identified 15 types of modified nucleoside at 21 positions. Several modifications were found at novel positions in tRNA, including 2′-O-methylcytidine at position 6, 2-thiocytidine at position 17, 2′-O-methyluridine at position 20, 5,2′-O-dimethylcytidine at position 32, and 2′-O-methylguanosine at position 42. Furthermore, methylwyosine was found at position 37 in this tRNATrp, although 1-methylguanosine is generally found at this location in tRNATrp from other archaea. We constructed trm11 (Δtrm11) and some gene disruptant strains and compared their tRNATrp with that of the wild-type strain, which confirmed the absence of m22G10 and other corresponding modifications, respectively. The lack of 2-methylguanosine (m2G) at position 67 in the trm11 trm14 double disruptant strain suggested that this methylation is mediated by Trm14, which was previously identified as an m2G6 methyltransferase. The Δtrm11 strain grew poorly at 95°C, indicating that archaeal Trm11 is required for T. kodakarensis survival at high temperatures. The m22G10 modification might have effects on stabilization of tRNA and/or correct folding of tRNA at the high temperatures. Collectively, these results provide new clues to the function of modifications and the substrate specificities of modification enzymes in archaeal tRNA, enabling us to propose a strategy for tRNA stabilization of this archaeon at high temperatures. IMPORTANCE Thermococcus kodakarensis is a hyperthermophilic archaeon that can grow at 60 to 100°C. The sequence of tRNATrp from this archaeon was determined by liquid chromatography/mass spectrometry. Fifteen types of modified nucleoside were observed at 21 positions, including 5 modifications at novel positions; in addition, methylwyosine at position 37 was newly observed in an archaeal tRNATrp. The construction of trm11 (Δtrm11) and other gene disruptant strains confirmed the enzymes responsible for modifications in this tRNA. The lack of 2-methylguanosine (m2G) at position 67 in the trm11 trm14 double disruptant strain suggested that this position is methylated by Trm14, which was previously identified as an m2G6 methyltransferase. The Δtrm11 strain grew poorly at 95°C, indicating that archaeal Trm11 is required for T. kodakarensis survival at high temperatures.


2020 ◽  
Vol 129 (6) ◽  
pp. 657-663
Author(s):  
Ryuta Hokao ◽  
Hiroyoshi Matsumura ◽  
Ryota Katsumi ◽  
Clement Angkawidjaja ◽  
Kazufumi Takano ◽  
...  

2014 ◽  
Vol 80 (20) ◽  
pp. 6280-6289 ◽  
Author(s):  
Nobuya Itoh ◽  
Satomi Kariya ◽  
Junji Kurokawa

ABSTRACTScreening of gene-specific amplicons from metagenomes (S-GAM) has tremendous biotechnological potential. We used this approach to isolate alcohol dehydrogenase (adh) genes from metagenomes based on theLeifsoniaspeciesadhgene (lsadh), the enzyme product of which can produce various chiral alcohols. A primer combination was synthesized by reference to homologs oflsadh, and PCR was used to amplify nearly full-lengthadhgenes from metagenomic DNAs. Alladhpreparations were fused withlsadhat the terminal region and used to constructEscherichia coliplasmid libraries. Of the approximately 2,000 colonies obtained, 1,200 clones were identified asadhpositive (∼60%). Finally, 40adhgenes,Hladh-001 toHladh-040 (forhomologousLeifsoniaadh), were identified from 223 clones with high efficiency, which were randomly sequenced from the 1,200 clones. TheHladhgenes obtained via this approach encoded a wide variety of amino acid sequences (8 to 99%). After screening, the enzymes obtained (HLADH-012 and HLADH-021) were confirmed to be superior to LSADH in some respects for the production of anti-Prelog chiral alcohols.


mBio ◽  
2019 ◽  
Vol 10 (5) ◽  
Author(s):  
Yasuyuki Yamamoto ◽  
Tamotsu Kanai ◽  
Tsuyoshi Kaneseki ◽  
Haruyuki Atomi

ABSTRACT TrpY from Methanothermobacter thermautotrophicus is a regulator that inhibits transcription of the Trp biosynthesis (trp) operon. Here, we show that the TrpY homolog in Thermococcus kodakarensis is not involved in such regulation. There are 87 genes on the T. kodakarensis genome predicted to encode transcriptional regulators (TRs). By screening for TRs that specifically bind to the promoter of the trp operon of T. kodakarensis, we identified TK0271. The gene resides in the aro operon, responsible for the biosynthesis of chorismate, a precursor for Trp, Tyr, and Phe. TK0271 was expressed in Escherichia coli, and the protein, here designated Tar (Thermococcales aromatic amino acid regulator), was purified. Tar specifically bound to the trp promoter with a dissociation constant (Kd) value of approximately 5 nM. Tar also bound to the promoters of the Tyr/Phe biosynthesis (tyr-phe) and aro operons. The protein recognized a palindromic sequence (TGGACA-N8-TGTCCA) conserved in these promoters. In vitro transcription assays indicated that Tar activates transcription from all three promoters. We cultivated T. kodakarensis in amino acid-based medium and found that transcript levels of the trp, tyr-phe, and aro operons increased in the absence of Trp, Tyr, or Phe. We further constructed a TK0271 gene disruption strain (ΔTK0271). Growth of ΔTK0271 was similar to that of the host strain in medium including Trp, Tyr, and Phe but was significantly impaired in the absence of any one of these amino acids. The results suggest that Tar is responsible for the transcriptional activation of aromatic amino acid biosynthesis genes in T. kodakarensis. IMPORTANCE The mechanisms of transcriptional regulation in archaea are still poorly understood. In this study, we identified a transcriptional regulator in the hyperthermophilic archaeon Thermococcus kodakarensis that activates the transcription of three operons involved in the biosynthesis of aromatic amino acids. The study represents one of only a few that identifies a regulator in Archaea that activates transcription. The results also imply that transcriptional regulation of genes with the same function is carried out by diverse mechanisms in the archaea, depending on the lineage.


Sign in / Sign up

Export Citation Format

Share Document