scholarly journals Cell Density and Growth Phase as Factors in the Resistance of a Biofilm of Pseudomonas aeruginosa (ATCC 27853) to Iodine

1993 ◽  
Vol 59 (7) ◽  
pp. 2320-2322 ◽  
Author(s):  
Matthew L. Brown ◽  
Joseph J. Gauthier
Author(s):  
Carla Pérez‐Cruz ◽  
Ferran Briansó ◽  
Elisabeth Sonnleitner ◽  
Udo Bläsi ◽  
Elena Mercadé

2019 ◽  
Vol 201 (9) ◽  
Author(s):  
Hui Zhou ◽  
Meizhen Wang ◽  
Nicole E. Smalley ◽  
Maxim Kostylev ◽  
Amy L. Schaefer ◽  
...  

ABSTRACT Pseudomonas aeruginosa uses quorum sensing (QS) to regulate the production of a battery of secreted products. At least some of these products are shared among the population and serve as public goods. When P. aeruginosa is grown on casein as the sole carbon and energy source, the QS-induced extracellular protease elastase is required for growth. We isolated a P. aeruginosa variant, which showed increased production of QS-induced factors after repeated transfers in casein broth. This variant, P. aeruginosa QS*, had a mutation in the glutathione synthesis gene gshA. We describe several experiments that show a gshA coding variant and glutathione affect the QS response. The P. aeruginosa QS transcription factor LasR has a redox-sensitive cysteine (C79). We report that GshA variant cells with a LasR C79S substitution show a similar QS response to that of wild-type P. aeruginosa. Surprisingly, it is not LasR but the QS transcription factor RhlR that is more active in bacteria containing the variant gshA. Our results demonstrate that QS integrates information about cell density and the cellular redox state via glutathione levels. IMPORTANCE Pseudomonas aeruginosa and other bacteria coordinate group behaviors using a chemical communication system called quorum sensing (QS). The QS system of P. aeruginosa is complex, with several regulators and signals. We show that decreased levels of glutathione lead to increased gene activation in P. aeruginosa, which did not occur in a strain carrying the redox-insensitive variant of a transcription factor. The ability of P. aeruginosa QS transcription factors to integrate information about cell density and cellular redox state shows these transcription factors can fine-tune levels of the gene products they control in response to at least two types of signals or cues.


2019 ◽  
Vol 201 (12) ◽  
Author(s):  
Colleen E. Harty ◽  
Dorival Martins ◽  
Georgia Doing ◽  
Dallas L. Mould ◽  
Michelle E. Clay ◽  
...  

ABSTRACTPseudomonas aeruginosafrequently resides among ethanol-producing microbes, making its response to the microbially produced concentrations of ethanol relevant to understanding its biology. Our transcriptome analysis found that genes involved in trehalose metabolism were induced by low concentrations of ethanol, and biochemical assays showed that levels of intracellular trehalose increased significantly upon growth with ethanol. The increase in trehalose was dependent on the TreYZ pathway but not other trehalose-metabolic enzymes (TreS or TreA). The sigma factor AlgU (AlgT), a homolog of RpoE in other species, was required for increased expression of thetreZgene and trehalose levels, but induction was not controlled by the well-characterized proteolysis of its anti-sigma factor, MucA. Growth with ethanol led to increased SpoT-dependent (p)ppGpp accumulation, which stimulates AlgU-dependent transcription oftreZand other AlgU-regulated genes through DksA, a (p)ppGpp and RNA polymerase binding protein. Ethanol stimulation of trehalose also required acylhomoserine lactone (AHL)-mediated quorum sensing (QS), as induction was not observed in a ΔlasRΔrhlRstrain. A network analysis using a model, eADAGE, built from publicly availableP. aeruginosatranscriptome data sets (J. Tan, G. Doing, K. A. Lewis, C. E. Price, et al., Cell Syst 5:63–71, 2017, https://doi.org/10.1016/j.cels.2017.06.003) provided strong support for our model in whichtreZand coregulated genes are controlled by both AlgU- and AHL-mediated QS. Consistent with (p)ppGpp- and AHL-mediated quorum-sensing regulation, ethanol, even when added at the time of culture inoculation, stimulatedtreZtranscript levels and trehalose production in cells from post-exponential-phase cultures but not in cells from exponential-phase cultures. These data highlight the integration of growth and cell density cues in theP. aeruginosatranscriptional response to ethanol.IMPORTANCEPseudomonas aeruginosais often found with bacteria and fungi that produce fermentation products, including ethanol. At concentrations similar to those produced by environmental microbes, we found that ethanol stimulated expression of trehalose-biosynthetic genes and cellular levels of trehalose, a disaccharide that protects against environmental stresses. The induction of trehalose by ethanol required the alternative sigma factor AlgU through DksA- and SpoT-dependent (p)ppGpp. Trehalose accumulation also required AHL quorum sensing and occurred only in post-exponential-phase cultures. This work highlights how cells integrate cell density and growth cues in their responses to products made by other microbes and reveals a new role for (p)ppGpp in the regulation of AlgU activity.


2013 ◽  
Vol 13 (1) ◽  
pp. 241 ◽  
Author(s):  
Wooseong Kim ◽  
Farah K Tengra ◽  
Jasmine Shong ◽  
Nicholas Marchand ◽  
Hon Chan ◽  
...  

Microbiology ◽  
2008 ◽  
Vol 77 (3) ◽  
pp. 275-280 ◽  
Author(s):  
E. S. Mil’ko ◽  
V. G. Kreier ◽  
N. S. Egorov ◽  
N. G. Loiko ◽  
N. A. Golod

Sign in / Sign up

Export Citation Format

Share Document