scholarly journals Modulation of Pseudomonas aeruginosa Quorum Sensing by Glutathione

2019 ◽  
Vol 201 (9) ◽  
Author(s):  
Hui Zhou ◽  
Meizhen Wang ◽  
Nicole E. Smalley ◽  
Maxim Kostylev ◽  
Amy L. Schaefer ◽  
...  

ABSTRACT Pseudomonas aeruginosa uses quorum sensing (QS) to regulate the production of a battery of secreted products. At least some of these products are shared among the population and serve as public goods. When P. aeruginosa is grown on casein as the sole carbon and energy source, the QS-induced extracellular protease elastase is required for growth. We isolated a P. aeruginosa variant, which showed increased production of QS-induced factors after repeated transfers in casein broth. This variant, P. aeruginosa QS*, had a mutation in the glutathione synthesis gene gshA. We describe several experiments that show a gshA coding variant and glutathione affect the QS response. The P. aeruginosa QS transcription factor LasR has a redox-sensitive cysteine (C79). We report that GshA variant cells with a LasR C79S substitution show a similar QS response to that of wild-type P. aeruginosa. Surprisingly, it is not LasR but the QS transcription factor RhlR that is more active in bacteria containing the variant gshA. Our results demonstrate that QS integrates information about cell density and the cellular redox state via glutathione levels. IMPORTANCE Pseudomonas aeruginosa and other bacteria coordinate group behaviors using a chemical communication system called quorum sensing (QS). The QS system of P. aeruginosa is complex, with several regulators and signals. We show that decreased levels of glutathione lead to increased gene activation in P. aeruginosa, which did not occur in a strain carrying the redox-insensitive variant of a transcription factor. The ability of P. aeruginosa QS transcription factors to integrate information about cell density and cellular redox state shows these transcription factors can fine-tune levels of the gene products they control in response to at least two types of signals or cues.

2020 ◽  
Vol 202 (14) ◽  
Author(s):  
Ryan R. Chaparian ◽  
Alyssa S. Ball ◽  
Julia C. van Kessel

ABSTRACT In vibrios, quorum sensing controls hundreds of genes that are required for cell density-specific behaviors including bioluminescence, biofilm formation, competence, secretion, and swarming motility. The central transcription factor in the quorum-sensing pathway is LuxR/HapR, which directly regulates ∼100 genes in the >400-gene regulon of Vibrio harveyi. Among these directly controlled genes are 15 transcription factors, which we predicted would comprise the second tier in the hierarchy of the LuxR regulon. We confirmed that LuxR binds to the promoters of these genes in vitro and quantified the extent of LuxR activation or repression of transcript levels. Transcriptome sequencing (RNA-seq) indicates that most of these transcriptional regulators control only a few genes, with the exception of MetJ, which is a global regulator. The genes regulated by these transcription factors are predicted to be involved in methionine and thiamine biosynthesis, membrane stability, RNA processing, c-di-GMP degradation, sugar transport, and other cellular processes. These data support a hierarchical model in which LuxR directly regulates 15 transcription factors that drive the second level of the gene expression cascade to influence cell density-dependent metabolic states and behaviors in V. harveyi. IMPORTANCE Quorum sensing is important for survival of bacteria in nature and influences the actions of bacterial groups. In the relatively few studied examples of quorum-sensing-controlled genes, these genes are associated with competition or cooperation in complex microbial communities and/or virulence in a host. However, quorum sensing in vibrios controls the expression of hundreds of genes, and their functions are mostly unknown or uncharacterized. In this study, we identify the regulators of the second tier of gene expression in the quorum-sensing system of the aquaculture pathogen Vibrio harveyi. Our identification of regulatory networks and metabolic pathways controlled by quorum sensing can be extended and compared to other Vibrio species to understand the physiology, ecology, and pathogenesis of these organisms.


2013 ◽  
Vol 57 (11) ◽  
pp. 5457-5461 ◽  
Author(s):  
Dong H. Kwon ◽  
Saboor Hekmaty ◽  
Gomattie Seecoomar

ABSTRACTGlutathione is a tripeptide (l-γ-glutamyl–l-cysteinyl–glycine) thiol compound existing in many bacteria and maintains a proper cellular redox state, thus protecting cells against toxic substances such as reactive oxygen species. Polyamines (spermine and spermidine) are low-molecular-weight aliphatic polycations ubiquitously presenting in all living cells and modulate many cellular functions. We previously reported that exogenous polyamines significantly enhanced β-lactam susceptibility of β-lactam-associated multidrug-resistantAcinetobacter baumannii. In this study, three genes differentially associated with the polyamine effects on β-lactam susceptibility were identified by transposon mutagenesis ofA. baumanniiATCC 19606. All three genes encoded components of membrane transport systems. Inactivation of one of the genes encoding a putative glutathione transport ATP-binding protein increased the accumulation of intracellular glutathione (∼150 to ∼200%) and significantly decreased the polyamine effects on β-lactam susceptibility inA. baumanniiATCC 19606. When the cells were grown with polyamines, the levels of intracellular glutathione inA. baumanniiATCC 19606 significantly decreased from ∼0.5 to ∼0.2 nmol, while the levels of extracellular glutathione were correspondingly increased. However, the levels of total glutathione (intra- plus extracellular) were unchanged when the cells were grown with or without polyamines. Overall, these results suggest that exogenous polyamines induce glutathione export, resulting in decreased levels of intracellular glutathione, which may produce an improper cellular redox state that is associated with the polyamine-mediated β-lactam susceptibility ofA. baumannii. This finding may provide a clue for development of new antimicrobial agents and/or novel strategies to treat multidrug-resistantA. baumannii.


2019 ◽  
Vol 201 (12) ◽  
Author(s):  
Colleen E. Harty ◽  
Dorival Martins ◽  
Georgia Doing ◽  
Dallas L. Mould ◽  
Michelle E. Clay ◽  
...  

ABSTRACTPseudomonas aeruginosafrequently resides among ethanol-producing microbes, making its response to the microbially produced concentrations of ethanol relevant to understanding its biology. Our transcriptome analysis found that genes involved in trehalose metabolism were induced by low concentrations of ethanol, and biochemical assays showed that levels of intracellular trehalose increased significantly upon growth with ethanol. The increase in trehalose was dependent on the TreYZ pathway but not other trehalose-metabolic enzymes (TreS or TreA). The sigma factor AlgU (AlgT), a homolog of RpoE in other species, was required for increased expression of thetreZgene and trehalose levels, but induction was not controlled by the well-characterized proteolysis of its anti-sigma factor, MucA. Growth with ethanol led to increased SpoT-dependent (p)ppGpp accumulation, which stimulates AlgU-dependent transcription oftreZand other AlgU-regulated genes through DksA, a (p)ppGpp and RNA polymerase binding protein. Ethanol stimulation of trehalose also required acylhomoserine lactone (AHL)-mediated quorum sensing (QS), as induction was not observed in a ΔlasRΔrhlRstrain. A network analysis using a model, eADAGE, built from publicly availableP. aeruginosatranscriptome data sets (J. Tan, G. Doing, K. A. Lewis, C. E. Price, et al., Cell Syst 5:63–71, 2017, https://doi.org/10.1016/j.cels.2017.06.003) provided strong support for our model in whichtreZand coregulated genes are controlled by both AlgU- and AHL-mediated QS. Consistent with (p)ppGpp- and AHL-mediated quorum-sensing regulation, ethanol, even when added at the time of culture inoculation, stimulatedtreZtranscript levels and trehalose production in cells from post-exponential-phase cultures but not in cells from exponential-phase cultures. These data highlight the integration of growth and cell density cues in theP. aeruginosatranscriptional response to ethanol.IMPORTANCEPseudomonas aeruginosais often found with bacteria and fungi that produce fermentation products, including ethanol. At concentrations similar to those produced by environmental microbes, we found that ethanol stimulated expression of trehalose-biosynthetic genes and cellular levels of trehalose, a disaccharide that protects against environmental stresses. The induction of trehalose by ethanol required the alternative sigma factor AlgU through DksA- and SpoT-dependent (p)ppGpp. Trehalose accumulation also required AHL quorum sensing and occurred only in post-exponential-phase cultures. This work highlights how cells integrate cell density and growth cues in their responses to products made by other microbes and reveals a new role for (p)ppGpp in the regulation of AlgU activity.


2015 ◽  
Vol 197 (17) ◽  
pp. 2810-2820 ◽  
Author(s):  
John H. Hammond ◽  
Emily F. Dolben ◽  
T. Jarrod Smith ◽  
Sabin Bhuju ◽  
Deborah A. Hogan

ABSTRACTInPseudomonas aeruginosa, the transcription factor Anr controls the cellular response to low oxygen or anoxia. Anr activity is high in oxygen-limited environments, including biofilms and populations associated with chronic infections, and Anr is necessary for persistence in a model of pulmonary infection. In this study, we characterized the Anr regulon in biofilm-grown cells at 1% oxygen in the laboratory strain PAO1 and in a quorum sensing (QS)-deficient clinical isolate, J215. As expected, transcripts related to denitrification, arginine fermentation, high-affinity cytochrome oxidases, and CupA fimbriae were lower in the Δanrderivatives. In addition, we observed that transcripts associated with quorum sensing regulation, iron acquisition and storage, type VI secretion, and the catabolism of aromatic compounds were also differentially expressed in the Δanrstrains. Prior reports have shown that quorum sensing-defective mutants have higher levels of denitrification, and we found that multiple Anr-regulated processes, including denitrification, were strongly inversely proportional to quorum sensing in both transcriptional and protein-based assays. We also found that in LasR-defective strains but not their LasR-intact counterparts, Anr regulated the production of the 4-hydroxy-2-alkylquinolines, which play roles in quorum sensing and interspecies interactions. These data show that Anr was required for the expression of important metabolic pathways in low-oxygen biofilms, and they reveal an expanded and compensatory role for Anr in the regulation of virulence-related genes in quorum sensing mutants, such as those commonly isolated from infections.IMPORTANCEPseudomonas aeruginosacauses acute ocular, soft tissue, and pulmonary infections, as well as chronic infections in the airways of cystic fibrosis patients.P. aeruginosauses quorum sensing (QS) to regulate virulence, but mutations in the gene encoding the master regulator of QS,lasR, are frequently observed in clinical isolates. We demonstrated that the regulon attributed to Anr, an oxygen-sensitive transcription factor, was more highly expressed inlasRmutants. Furthermore, we show that Anr regulates the production of several different secreted factors inlasRmutants. These data demonstrate the importance of Anr in naturally occurring quorum sensing mutants in the context of chronic infections.


mBio ◽  
2018 ◽  
Vol 9 (4) ◽  
Author(s):  
Fengming Ding ◽  
Ken-Ichi Oinuma ◽  
Nicole E. Smalley ◽  
Amy L. Schaefer ◽  
Omar Hamwy ◽  
...  

ABSTRACTPseudomonas aeruginosauses two acyl-homoserine lactone signals and two quorum sensing (QS) transcription factors, LasR and RhlR, to activate dozens of genes. LasR responds toN-3-oxo-dodecanoyl-homoserine lactone (3OC12-HSL) and RhlR toN-butanoyl-homoserine lactone (C4-HSL). There is a thirdP. aeruginosaacyl-homoserine-lactone-responsive transcription factor, QscR, which acts to dampen or delay activation of genes by LasR and RhlR by an unknown mechanism. To better understand the role of QscR inP. aeruginosaQS, we performed a chromatin immunoprecipitation analysis, which showed this transcription factor bound the promoter of only a single operon of three genes linked toqscR, PA1895 to PA1897. Other genes that appear to be regulated by QscR in transcriptome studies were not direct targets of QscR. Deletion of PA1897 recapitulates the early QS activation phenotype of a QscR-null mutant, and the phenotype of a QscR-null mutant was complemented by PA1895-1897 but not by PA1897 alone. We conclude that QscR acts to modulate quorum sensing through regulation of a single operon, apparently raising the QS threshold of the population and providing a “brake” on QS autoinduction.IMPORTANCEQuorum sensing, a cell-cell communication system, is broadly distributed among bacteria and is commonly used to regulate the production of shared products. An important consequence of quorum sensing is a delay in production of certain products until the population density is high. The bacteriumPseudomonas aeruginosahas a particularly complicated quorum sensing system involving multiple signals and receptors. One of these receptors, QscR, downregulates gene expression, unlike the other receptors inP. aeruginosa. QscR does so by inducing the expression of a single operon whose function provides an element of resistance to a population reaching a quorum. This finding has importance for design of quorum sensing inhibitory strategies and can also inform design of synthetic biological circuits that use quorum sensing receptors to regulate gene expression.


2021 ◽  
Vol 22 (2) ◽  
pp. 967
Author(s):  
Maria Favia ◽  
Anna Atlante

The redox states of NAD and NADP are linked to each other in the mitochondria thanks to the enzyme nicotinamide nucleotide transhydrogenase (NNT) which, by utilizing the mitochondrial membrane potential (mΔΨ), catalyzes the transfer of redox potential between these two coenzymes, reducing one at the expense of the oxidation of the other. In order to define NNT reaction direction in CF cells, NNT activity under different redox states of cell has been investigated. Using spectrophotometric and western blotting techniques, the presence, abundance and activity level of NNT were determined. In parallel, the levels of NADPH and NADH as well as of mitochondrial and cellular ROS were also quantified. CF cells showed a 70% increase in protein expression compared to the Wt sample; however, regarding NNT activity, it was surprisingly lower in CF cells than healthy cells (about 30%). The cellular redox state, together with the low mΔΨ, pushes to drive NNT reverse reaction, at the expense of its antioxidant potential, thus consuming NADPH to support NADH production. At the same time, the reduced NNT activity prevents the NADH, produced by the reaction, from causing an explosion of ROS by the damaged respiratory chain, in accordance with the reduced level of mitochondrial ROS in NNT-loss cells. This new information on cellular bioenergetics represents an important building block for further understanding the molecular mechanisms responsible for cellular dysfunction in cystic fibrosis.


2016 ◽  
Vol 100 ◽  
pp. S119 ◽  
Author(s):  
Dustin Carroll ◽  
Yanming Zhao ◽  
Haining Zhu ◽  
Ines Batinic-Haberle ◽  
Daret St. Clair

Sign in / Sign up

Export Citation Format

Share Document