scholarly journals Glucose metabolism in the yeast Schwanniomyces castellii: role of phosphorylation site I and an alternative respiratory pathway.

1997 ◽  
Vol 63 (7) ◽  
pp. 2779-2784 ◽  
Author(s):  
E Zimmer ◽  
S Blanchard ◽  
H Boze ◽  
G Moulin ◽  
P Galzy
1988 ◽  
Vol 43 (5-6) ◽  
pp. 438-442 ◽  
Author(s):  
Matilde Barón Ayala ◽  
Gerhard Sandmann

In Scenedesmus about half of NADH oxidation proceeds via a cyanide-sensitive and the other half via a cyanide-insensitive respiratory pathway. In contrast, respiration is completely cyanide sensitive in pea indicating that the alternative respiratory pathway is absent. Cu deficiency in pea plants and in heterotrophically grown Scenedesmus cells interferes with respiratory activity of mitochondria. In both organisms, the cyanide-sensitive NADH oxidation was strongly decreased during cultivation in low Cu media. Cu sensitivity was also observed for the alternative respiratory pathway in Scenedesmus. These results suggest that a Cu-containing component is involved in the alternative respiratory pathway. This is the main reason why alternative respiration cannot be regarded as a compensation for low cytochrome-oxidase activities during Cu starvation. The Cu dependency of the cyanide-sensitive respiration was located at the site of cytochrome oxidase. A strong coordination of the biosynthesis of the Cu-containing cytochrome-oxidase complex was evident. When the endogenous Cu pool was low, formation of cytochrome aa3, another component of cytochrome oxidase, was also decreased.


Bragantia ◽  
2002 ◽  
Vol 61 (2) ◽  
pp. 111-114 ◽  
Author(s):  
Natalia V. Pystina ◽  
Roman A. Danilov

Effects of higher temperatures on respiration and activity of alternative oxidase (AOX) were studied in mature leaves of Ajuga reptans L. and Rhodiola rosea L. Total respiration in both A. reptans and R. rosea increased exponentially with the increasing temperature of 10 °C to 35 °C. Respiration in the presence of benzhydroxamic acid (BHAM) also increased exponentially in accordance with the increasing temperature in the leaves of both A. reptans and R. rosea. Relative activity of the alternative pathway decreased significantly in the leaves of A. reptans with increasing temperatures. However, an increase in the relative activity of the alternative pathway was detected in the leaves of R. rosea. Thermoresistance of the alternative respiratory pathway was considered to be higher in R. rosea compared to A. reptans. We suppose that A. reptans and R. rosea have different mechanisms regulating partitioning of electrons to the alternative respiratory pathway.


Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 280-LB ◽  
Author(s):  
SHANU JAIN ◽  
DILIP K. TOSH ◽  
MARC REITMAN ◽  
KENNETH A. JACOBSON

Children ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 554
Author(s):  
Stefania Croce ◽  
Maria Antonietta Avanzini ◽  
Corrado Regalbuto ◽  
Erika Cordaro ◽  
Federica Vinci ◽  
...  

In the last few decades, obesity has increased dramatically in pediatric patients. Obesity is a chronic disease correlated with systemic inflammation, characterized by the presence of CD4 and CD8 T cell infiltration and modified immune response, which contributes to the development of obesity related diseases and metabolic disorders, including impaired glucose metabolism. In particular, Treg and Th17 cells are dynamically balanced under healthy conditions, but imbalance occurs in inflammatory and pathological states, such as obesity. Some studies demonstrated that peripheral Treg and Th17 cells exhibit increased imbalance with worsening of glucose metabolic dysfunction, already in children with obesity. In this review, we considered the role of adipose tissue immunomodulation and the potential role played by Treg/T17 imbalance on the impaired glucose metabolism in pediatric obesity. In the patient care, immune monitoring could play an important role to define preventive strategies of pediatric metabolic disease treatments.


2021 ◽  
Vol 12 (5) ◽  
Author(s):  
Yiming He ◽  
Mingxi Gan ◽  
Yanan Wang ◽  
Tong Huang ◽  
Jianbin Wang ◽  
...  

AbstractGrainyhead-like 1 (GRHL1) is a transcription factor involved in embryonic development. However, little is known about the biological functions of GRHL1 in cancer. In this study, we found that GRHL1 was upregulated in non-small cell lung cancer (NSCLC) and correlated with poor survival of patients. GRHL1 overexpression promoted the proliferation of NSCLC cells and knocking down GRHL1 inhibited the proliferation. RNA sequencing showed that a series of cell cycle-related genes were altered when knocking down GRHL1. We further demonstrated that GRHL1 could regulate the expression of cell cycle-related genes by binding to the promoter regions and increasing the transcription of the target genes. Besides, we also found that EGF stimulation could activate GRHL1 and promoted its nuclear translocation. We identified the key phosphorylation site at Ser76 on GRHL1 that is regulated by the EGFR-ERK axis. Taken together, these findings elucidate a new function of GRHL1 on regulating the cell cycle progression and point out the potential role of GRHL1 as a drug target in NSCLC.


Author(s):  
Minsoo Kang ◽  
Sun Kyoung Han ◽  
Suhyun Kim ◽  
Sungyeon Park ◽  
Yerin Jo ◽  
...  

Abstract Hepatic gluconeogenesis is the central pathway for glucose generation in the body. The imbalance between glucose synthesis and uptake leads to metabolic diseases such as obesity, diabetes, and cardiovascular diseases. Small leucine zipper protein (sLZIP) is an isoform of LZIP and it mainly functions as a transcription factor. Although sLZIP is known to regulate the transcription of genes involved in various cellular processes, the role of sLZIP in hepatic glucose metabolism is not known. In this study, we investigated the regulatory role of sLZIP in hepatic gluconeogenesis and its involvement in metabolic disorder. We found that sLZIP expression was elevated during glucose starvation, leading to the promotion of phosphoenolpyruvate carboxylase and glucose-6-phosphatase expression in hepatocytes. However, sLZIP knockdown suppressed the expression of the gluconeogenic enzymes under low glucose conditions. sLZIP also enhanced glucose production in the human liver cells and mouse primary hepatic cells. Fasting-induced cyclic adenosine monophosphate impeded sLZIP degradation. Results of glucose and pyruvate tolerance tests showed that sLZIP transgenic mice exhibited abnormal blood glucose metabolism. These findings suggest that sLZIP is a novel regulator of gluconeogenic enzyme expression and plays a role in blood glucose homeostasis during starvation.


Sign in / Sign up

Export Citation Format

Share Document