scholarly journals EGFR-ERK induced activation of GRHL1 promotes cell cycle progression by up-regulating cell cycle related genes in lung cancer

2021 ◽  
Vol 12 (5) ◽  
Author(s):  
Yiming He ◽  
Mingxi Gan ◽  
Yanan Wang ◽  
Tong Huang ◽  
Jianbin Wang ◽  
...  

AbstractGrainyhead-like 1 (GRHL1) is a transcription factor involved in embryonic development. However, little is known about the biological functions of GRHL1 in cancer. In this study, we found that GRHL1 was upregulated in non-small cell lung cancer (NSCLC) and correlated with poor survival of patients. GRHL1 overexpression promoted the proliferation of NSCLC cells and knocking down GRHL1 inhibited the proliferation. RNA sequencing showed that a series of cell cycle-related genes were altered when knocking down GRHL1. We further demonstrated that GRHL1 could regulate the expression of cell cycle-related genes by binding to the promoter regions and increasing the transcription of the target genes. Besides, we also found that EGF stimulation could activate GRHL1 and promoted its nuclear translocation. We identified the key phosphorylation site at Ser76 on GRHL1 that is regulated by the EGFR-ERK axis. Taken together, these findings elucidate a new function of GRHL1 on regulating the cell cycle progression and point out the potential role of GRHL1 as a drug target in NSCLC.

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3571-3571
Author(s):  
Sunil Muthusami ◽  
Chunhua Song ◽  
Xiaokang Pan ◽  
Chandrika S. Gowda ◽  
Kimberly J Payne ◽  
...  

Abstract B-cell acute lymphoblastic leukemia (B-ALL) is the most common childhood leukemia. Expression profiling has identified IKZF1 (Ikaros) as a major tumor suppressor in B-ALL and established reduced Ikaros function as a poor prognostic marker for this disease. Ikaros regulates expression of its target genes via chromatin remodeling. In vivo, Ikaros can form a complex with histone deacetylases HDAC1 and/or HDAC2 as well as the NuRD chromatin remodeling complex. The mechanisms by which Ikaros exerts its tumor suppressor function and regulates gene expression in B-ALL are unknown. Here we report the use of chromatin immunoprecipitation coupled with next generation sequencing (ChIP-SEQ) to identify genes that are regulated by Ikaros in vivo and to determine the role of Ikaros in chromatin remodeling in B-ALL. Results reveal that Ikaros binds to the promoter regions of a large number of genes that are critical for cell cycle progression. These include CDC2, CDC16, CDC25A, ANAPC1, and ANAPC7. Overexpression of Ikaros in leukemia cells resulted in transcriptional repression of Ikaros target genes. Results from luciferase reporter assays performed using the respective promoters of Ikaros target genes support a role for Ikaros as a transcriptional repressor of these genes. Downregulation of Ikaros by siRNA resulted in increased expression of Ikaros target genes that control cell cycle progression. These results suggest that Ikaros functions as a negative regulator of cell cycle progression by repressing transcription of cell cycle-promoting genes. Next, we studied how Ikaros binding affects the epigenetic signature at promoters of Ikaros target genes. Global epigenetic mapping showed that Ikaros binding at the promoter region of cell cycle-promoting genes is associated with the formation of one of two types of repressive epigenetic marks – either H3K27me3 or H3K9me3. While these epigenetic marks were mutually exclusive, they were both associated with the loss of H3K9 acetylation and transcriptional repression. Serial qChIP assays spanning promoters of the Ikaros target genes revealed that the presence of H3K27me3 is associated with Ikaros and HDAC1 binding, while the H3K9me3 modification is associated with Ikaros binding and the absence of HDAC1. ChIP-SEQ analysis of HDAC1 global genomic binding demonstrated that over 80% of H3K27me3 modifications at promoter regions are associated with HDAC1 binding at surrounding sites. The treatment of leukemia cells with the histone deacetylase inhibitor – trichostatin (TSA) resulted in a severe reduction of global levels of H3K27me3, as evidenced by Wesern blot. These data suggest that HDAC1 activity in leukemia is essential for the formation of repressive chromatin that is characterized by the presence of H3K27me3. Our data suggest that Ikaros binding at the promoters of its target genes can result in the formation of repressive chromatin by two distinct mechanisms: 1) direct Ikaros binding resulting in increased H3K9me3 or 2) Ikaros recruitment of HDAC1 with increased H3K27me3 modifications. These data suggest distinct mechanisms for the regulation of chromatin remodeling and target gene expression by Ikaros alone, and Ikaros in complex with HDAC1. In conclusion, the presented data suggest that HDAC1 has a key role in regulating cell cycle progression and proliferation in B-ALL. Our results identify novel, Ikaros-mediated mechanisms of epigenetic regulation that contribute to tumor suppression in leukemia. Supported by National Institutes of Health R01 HL095120, and the Four Diamonds Fund Endowment. Disclosures No relevant conflicts of interest to declare.


Author(s):  
Georgios I. Laliotis ◽  
Evangelia Chavdoula ◽  
Maria D. Paraskevopoulou ◽  
Abdul D. Kaba ◽  
Alessandro La Ferlita ◽  
...  

AbstractOur previous studies have shown that IWS1 (Interacts with Spt6) is a phosphorylation target of AKT and regulates the alternative RNA splicing of FGFR2, linking IWS1 with human Non-Small Cell Lung Cancer. To further address the role of IWS1 in alternative RNA splicing in lung cancer, we performed an RNA-seq study using lung adenocarcinoma cells in which IWS1 was knocked down or replaced by its phosphorylation site mutant. The results identified a novel, exon 2 deficient splice variant of the splicing factor U2 Associated-Factor 2 (U2AF2), whose abundance increases, upon the loss of phosphorylated IWS1. This exon encodes part of the U2AF65 Serine-Rich (RS) Domain, which is required for its binding with pre-mRNA Processing factor 19 (Prp19). Here, we show that U2AF2 exon 2 inclusion depends on phosphorylated IWS1, by promoting Histone H3K36 trimethylation and the assembly of LEDGF/SRSF1 splicing complexes, in a cell-cycle specific manner. Inhibition of the pathway results in the downregulation of cell cycle division associated 5 (CDCA5), a phosphorylation target and regulator of ERK, leading to G2/M phase arrest, impaired cell proliferation and tumor growth in mouse xenografts models, an effect more pronounced in EGFR mutant cells. Analysis of lung adenocarcinoma samples revealed strong correlations between IWS1 phosphorylation, U2AF2 RNA splicing, and Sororin/p-ERK levels, especially in EGFR, as opposed to KRAS mutant patients. More importantly, IWS1 phosphorylation and U2AF2 RNA splicing pattern are positively correlated with tumor stage, grade, relapse and metastasis, and associated with poor survival in lung adenocarcinoma patients, harboring EGFR, but not KRAS, mutations. This work highlights the instrumental role of the AKT/p-IWS1 axis to alternative RNA splicing in governing cell cycle progression and tumorigenesis, and proposes this axis as a novel drug target in EGFR mutant lung adenocarcinoma, by concomitantly affecting the epigenetic regulation of RNA processing and oncogenic signals.


2019 ◽  
Vol 26 (11) ◽  
pp. 800-818
Author(s):  
Zujian Xiong ◽  
Xuejun Li ◽  
Qi Yang

Pituitary Tumor Transforming Gene (PTTG) of human is known as a checkpoint gene in the middle and late stages of mitosis, and is also a proto-oncogene that promotes cell cycle progression. In the nucleus, PTTG works as securin in controlling the mid-term segregation of sister chromatids. Overexpression of PTTG, entering the nucleus with the help of PBF in pituitary adenomas, participates in the regulation of cell cycle, interferes with DNA repair, induces genetic instability, transactivates FGF-2 and VEGF and promotes angiogenesis and tumor invasion. Simultaneously, overexpression of PTTG induces tumor cell senescence through the DNA damage pathway, making pituitary adenoma possessing the potential self-limiting ability. To elucidate the mechanism of PTTG in the regulation of pituitary adenomas, we focus on both the positive and negative function of PTTG and find out key factors interacted with PTTG in pituitary adenomas. Furthermore, we discuss other possible mechanisms correlate with PTTG in pituitary adenoma initiation and development and the potential value of PTTG in clinical treatment.


Biomolecules ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 995
Author(s):  
Xiaoyan Hou ◽  
Lijun Qiao ◽  
Ruijuan Liu ◽  
Xuechao Han ◽  
Weifang Zhang

Persistent infection of high-risk human papillomavirus (HR-HPV) plays a causal role in cervical cancer. Regulator of chromosome condensation 1 (RCC1) is a critical cell cycle regulator, which undergoes a few post-translational modifications including phosphorylation. Here, we showed that serine 11 (S11) of RCC1 was phosphorylated in HPV E7-expressing cells. However, S11 phosphorylation was not up-regulated by CDK1 in E7-expressing cells; instead, the PI3K/AKT/mTOR pathway promoted S11 phosphorylation. Knockdown of AKT or inhibition of the PI3K/AKT/mTOR pathway down-regulated phosphorylation of RCC1 S11. Furthermore, S11 phosphorylation occurred throughout the cell cycle, and reached its peak during the mitosis phase. Our previous data proved that RCC1 was necessary for the G1/S cell cycle progression, and in the present study we showed that the RCC1 mutant, in which S11 was mutated to alanine (S11A) to mimic non-phosphorylation status, lost the ability to facilitate G1/S transition in E7-expressing cells. Moreover, RCC1 S11 was phosphorylated by the PI3K/AKT/mTOR pathway in HPV-positive cervical cancer SiHa and HeLa cells. We conclude that S11 of RCC1 is phosphorylated by the PI3K/AKT/mTOR pathway and phosphorylation of RCC1 S11 facilitates the abrogation of G1 checkpoint in HPV E7-expressing cells. In short, our study explores a new role of RCC1 S11 phosphorylation in cell cycle regulation.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Jing Du ◽  
Weiwei Chen ◽  
Lijuan Yang ◽  
Juanjuan Dai ◽  
Jiwei Guo ◽  
...  

Abstract Deregulated Sonic Hedgehog (SHH) pathway facilitates the initiation, progression, and metastasis of Non-small cell lung cancer (NSCLC), confers drug resistance and renders a therapeutic interference option to lung cancer patients with poor prognosis. In this study, we screened and evaluated the specificity of a Chinese herb Scutellariabarbata D. Don extraction (SBE) in repressing SHH signaling pathway to block NSCLC progression. Our study confirmed that aberrant activation of the SHH signal pathway conferred more proliferative and invasive phenotypes to human lung cancer cells. This study revealed that SBE specifically repressed SHH signaling pathway to interfere the SHH-mediated NSCLC progression and metastasis via arresting cell cycle progression. We also found that SBE significantly sensitized lung cancer cells to chemotherapeutic agent DDP via repressing SHH components in vitro and in vivo. Mechanistic investigations indicated that SBE transcriptionally and specifically downregulated SMO and consequently attenuated the activities of GLI1 and its downstream targets in SHH signaling pathway, which interacted with cell cycle checkpoint enzymes to arrest cell cycle progression and lead to cellular growth inhibition and migration blockade. Collectively, our results suggest SBE as a novel drug candidate for NSCLC which specifically and sensitively targets SHH signaling pathway.


1991 ◽  
Vol 11 (12) ◽  
pp. 6177-6184
Author(s):  
B Ducommun ◽  
P Brambilla ◽  
G Draetta

suc1+ encodes an essential cell cycle regulator of the fission yeast Schizosaccharomyces pombe. Its product, a 13-kDa protein, interacts with the Cdc2 protein kinase. Both positive and negative effects on cell cycle progression have been attributed to Suc1. To date, the exact mechanisms and the physiological role of the interaction between Suc1 and Cdc2 remain unclear. Here we have studied the molecular basis of this association. We show that Cdc2 can bind Suc1 or its mammalian homolog directly in the absence of any additional protein component. Using an alanine scanning mutagenesis method, we analyzed the interaction between Cdc2 and Suc1. We show that the integrity of several domains on the Cdc2 protein, including sites directly involved in catalytic activity, is required for binding to Suc1. Furthermore, Cdc2 mutant proteins unable to bind Suc1 (but able to bind cyclins) are nonfunctional when overexpressed in S. pombe, indicating that a specific interaction with Suc1 is required for Cdc2 function.


PLoS ONE ◽  
2018 ◽  
Vol 13 (11) ◽  
pp. e0208022 ◽  
Author(s):  
Changfu Yao ◽  
Chao Wang ◽  
Yeran Li ◽  
Michael Zavortink ◽  
Vincent Archambault ◽  
...  

2012 ◽  
pp. 235-243 ◽  
Author(s):  
Norman Balcazar Morales ◽  
Cecilia Aguilar de Plata

Growth factors, insulin signaling and nutrients are important regulators of β-cell mass and function. The events linking these signals to regulation of β-cell mass are not completely understood. Recent findings indicate that mTOR pathway integrates signals from growth factors and nutrients with transcription, translation, cell size, cytoskeleton remodeling and mitochondrial metabolism. mTOR is a part of two distinct complexes; mTORC1 and mTORC2. The mammalian TORC1 is sensitive to rapamycin and contains Raptor, deptor, PRAS40 and the G protein β-subunit-like protein (GβL). mTORC1 activates key regulators of protein translation; ribosomal S6 kinase (S6K) and eukaryote initiation factor 4E-binding protein 1. This review summarizes current findings about the role of AKT/mTORC1 signaling in regulation of pancreatic β cell mass and proliferation. mTORC1 is a major regulator of β-cell cycle progression by modulation of cyclins D2, D3 and cdk4/cyclin D activity. These studies uncovered key novel pathways controlling cell cycle progression in β-cells in vivo. This information can be used to develop alternative approaches to expand β-cell mass in vivo and in vitro without the risk of oncogenic transformation. The acquisition of such knowledge is critical for the design of improved therapeutic strategies for the treatment and cure of diabetes as well as to understand the effects of mTOR inhibitors in β-cell function.


Sign in / Sign up

Export Citation Format

Share Document