scholarly journals Expression of the Escherichia coli Catabolic Threonine Dehydratase in Corynebacterium glutamicum and Its Effect on Isoleucine Production

1999 ◽  
Vol 65 (7) ◽  
pp. 3100-3107 ◽  
Author(s):  
S. Guillouet ◽  
A. A. Rodal ◽  
G.-H. An ◽  
P. A. Lessard ◽  
A. J. Sinskey

ABSTRACT The catabolic or biodegradative threonine dehydratase (E.C. 4.2.1.16) of Escherichia coli is an isoleucine feedback-resistant enzyme that catalyzes the degradation of threonine to α-ketobutyrate, the first reaction of the isoleucine pathway. We cloned and expressed this enzyme in Corynebacterium glutamicum. We found that while the native threonine dehydratase of C. glutamicum was totally inhibited by 15 mM isoleucine, the heterologous catabolic threonine dehydratase expressed in the same strain was much less sensitive to isoleucine; i.e., it retained 60% of its original activity even in the presence of 200 mM isoleucine. To determine whether expressing the catabolic threonine dehydratase (encoded by the tdcB gene) provided any benefit for isoleucine production compared to the native enzyme (encoded by theilvA gene), fermentations were performed with the wild-type strain, an ilvA-overexpressing strain, and atdcB-expressing strain. By expressing the heterologous catabolic threonine dehydratase in C. glutamicum, we were able to increase the production of isoleucine 50-fold, whereas overexpression of the native threonine dehydratase resulted in only a fourfold increase in isoleucine production. Carbon balance data showed that when just one enzyme, the catabolic threonine dehydratase, was overexpressed, 70% of the carbon available for the lysine pathway was redirected into the isoleucine pathway.

2001 ◽  
Vol 183 (17) ◽  
pp. 5187-5197 ◽  
Author(s):  
Vanessa Sperandio ◽  
Alfredo G. Torres ◽  
Jorge A. Girón ◽  
James B. Kaper

ABSTRACT Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is responsible for outbreaks of bloody diarrhea and hemolytic-uremic syndrome in many countries. EHEC virulence mechanisms include the production of Shiga toxins (Stx) and formation of attaching and effacing (AE) lesions on intestinal epithelial cells. We recently reported that genes involved in the formation of the AE lesion were regulated by quorum sensing through autoinducer-2, which is synthesized by the product of the luxS gene. In this study we hybridized an E. coli gene array with cDNA synthesized from RNA that was extracted from EHEC strain 86-24 and its isogenicluxS mutant. We observed that 404 genes were regulated by luxS at least fivefold, which comprises approximately 10% of the array genes; 235 of these genes were up-regulated and 169 were down-regulated in the wild-type strain compared to in theluxS mutant. Down-regulated genes included several involved in cell division, as well as ribosomal and tRNA genes. Consistent with this pattern of gene expression, theluxS mutant grows faster than the wild-type strain (generation times of 37.5 and 60 min, respectively, in Dulbecco modified Eagle medium). Up-regulated genes included several involved in the expression and assembly of flagella, motility, and chemotaxis. Using operon::lacZ fusions to class I, II, and III flagellar genes, we were able to confirm this transcriptional regulation. We also observed fewer flagella by Western blotting and electron microscopy and decreased motility halos in semisolid agar in the luxS mutant. The average swimming speeds for the wild-type strain and the luxS mutant are 12.5 and 6.6 μm/s, respectively. We also observed an increase in the production of Stx due to quorum sensing. Genes encoding Stx, which are transcribed along with λ-like phage genes, are induced by an SOS response, and genes involved in the SOS response were also regulated by quorum sensing. These results indicate that quorum sensing is a global regulatory mechanism for basic physiological functions of E. coli as well as for virulence factors.


1985 ◽  
Vol 229 (2) ◽  
pp. 453-458 ◽  
Author(s):  
M Okada ◽  
S Natori

When Escherichia coli was treated with sarcotoxin I, a potent bactericidal protein of Sarcophaga peregrina (fleshfly), K+ inside of the cells leaked out rapidly and the ATP pool of the cells rapidly decreased. These results suggested that the bactericidal effect of sarcotoxin I was due to its ionophore activity, and that it blocked the generation of ATP by inhibiting formation of the proton gradient essential for oxidative phosphorylation. This was confirmed by use of an uncA mutant, which was much less susceptible than the wild-type strain to sarcotoxin I under fixed ionic conditions.


2002 ◽  
Vol 68 (8) ◽  
pp. 4107-4110 ◽  
Author(s):  
Tomohiro Morohoshi ◽  
Tatsuya Maruo ◽  
Yoko Shirai ◽  
Junichi Kato ◽  
Tsukasa Ikeda ◽  
...  

ABSTRACT The biological process for phosphate (Pi) removal is based on the use of bacteria capable of accumulating inorganic polyphosphate (polyP). We obtained Escherichia coli mutants which accumulate a large amount of polyP. The polyP accumulation in these mutants was ascribed to a mutation of the phoU gene that encodes a negative regulator of the Pi regulon. Insertional inactivation of the phoU gene also elevated the intracellular level of polyP in Synechocystis sp. strain PCC6803. The mutant could remove fourfold more Pi from the medium than the wild-type strain removed.


2013 ◽  
Vol 81 (9) ◽  
pp. 3472-3478 ◽  
Author(s):  
Haiqing Sheng ◽  
Y. N. Nguyen ◽  
Carolyn J. Hovde ◽  
Vanessa Sperandio

ABSTRACTEnterohemorrhagicEscherichia coli(EHEC) causes hemorrhagic colitis and life-threatening complications. The main reservoirs for EHEC are healthy ruminants. We reported that SdiA senses acyl homoserine lactones (AHLs) in the bovine rumen to activate expression of the glutamate acid resistance (gad) genes priming EHEC's acid resistance before they pass into the acidic abomasum. Conversely, SdiA represses expression of the locus of enterocyte effacement (LEE) genes, whose expression is not required for bacterial survival in the rumen but is necessary for efficient colonization at the rectoanal junction (RAJ) mucosa. Our previous studies show that SdiA-dependent regulation was necessary for efficient EHEC colonization of cattle fed a grain diet. Here, we compared the SdiA role in EHEC colonization of cattle fed a forage hay diet. We detected AHLs in the rumen of cattle fed a hay diet, and these AHLs activatedgadgene expression in an SdiA-dependent manner. The rumen fluid and fecal samples from hay-fed cattle were near neutrality, while the same digesta samples from grain-fed animals were acidic. Cattle fed either grain or hay and challenged with EHEC orally carried the bacteria similarly. EHEC was cleared from the rumen within days and from the RAJ mucosa after approximately one month. In competition trials, where animals were challenged with both wild-type and SdiA deletion mutant bacteria, diet did not affect the outcome that the wild-type strain was better able to persist and colonize. However, the wild-type strain had a greater advantage over the SdiA deletion mutant at the RAJ mucosa among cattle fed the grain diet.


2020 ◽  
Vol 8 (9) ◽  
pp. 1444
Author(s):  
Mitzi de la Cruz ◽  
Elisa A. Ramírez ◽  
Juan-Carlos Sigala ◽  
José Utrilla ◽  
Alvaro R. Lara

The design of optimal cell factories requires engineering resource allocation for maximizing product synthesis. A recently developed method to maximize the saving in cell resources released 0.5% of the proteome of Escherichia coli by deleting only three transcription factors. We assessed the capacity for plasmid DNA (pDNA) production in the proteome-reduced strain in a mineral medium, lysogeny, and terrific broths. In all three cases, the pDNA yield from biomass was between 33 and 53% higher in the proteome-reduced than in its wild type strain. When cultured in fed-batch mode in shake-flask, the proteome-reduced strain produced 74.8 mg L−1 pDNA, which was four times greater than its wild-type strain. Nevertheless, the pDNA supercoiled fraction was less than 60% in all cases. Deletion of recA increased the pDNA yields in the wild type, but not in the proteome-reduced strain. Furthermore, recA mutants produced a higher fraction of supercoiled pDNA, compared to their parents. These results show that the novel proteome reduction approach is a promising starting point for the design of improved pDNA production hosts.


2002 ◽  
Vol 184 (10) ◽  
pp. 2850-2853 ◽  
Author(s):  
Annie Conter ◽  
Rachel Sturny ◽  
Claude Gutierrez ◽  
Kaymeuang Cam

ABSTRACT The RcsCB His-Asp phosphorelay system regulates the expression of several genes of Escherichia coli, but the molecular nature of the inducing signal is still unknown. We show here that treatment of an exponentially growing culture of E. coli with the cationic amphipathic compound chlorpromazine (CPZ) stimulates expression of a set of genes positively regulated by the RcsCB system. This induction is abolished in rcsB or rcsC mutant strains. In addition, treatment with CPZ inhibits growth. The wild-type strain is able to recover from this inhibition and resume growth after a period of adaptation. In contrast, strains deficient in the RcsCB His-Asp phosphorelay system are hypersensitive to CPZ. These results suggest that cells must express specific RcsCB-regulated genes in order to cope with the CPZ-induced stress. This is the first report of the essential role of the RcsCB system in a stress situation. These results also strengthen the notion that alterations of the cell envelope induce a signal recognized by the RcsC sensor.


2000 ◽  
Vol 182 (23) ◽  
pp. 6630-6637 ◽  
Author(s):  
Chin Li ◽  
Yi Ping Tao ◽  
Lee D. Simon

ABSTRACT Transcription of the clpP-clpX operon ofEscherichia coli leads to the production of two different sizes of transcripts. In log phase, the level of the longer transcript is higher than the level of the shorter transcript. Soon after the onset of carbon starvation, the level of the shorter transcript increases significantly, and the level of the longer transcript decreases. The longer transcript consists of the entireclpP-clpX operon, whereas the shorter transcript contains the entire clpP gene but none of the clpXcoding sequence. The RpoH protein is required for the increase in the level of the shorter transcript during carbon starvation. Primer extension experiments suggest that there is increased usage of the ς32-dependent promoter of the clpP-clpXoperon within 15 min after the start of carbon starvation. Expression of the clpP-clpX operon from the promoters upstream of theclpP gene decreases to a very low level by 20 min after the onset of carbon starvation. Various pieces of evidence suggest, though they do not conclusively prove, that production of the shorter transcript may involve premature termination of the longer transcript. The half-life of the shorter transcript is much less than that of the longer transcript during carbon starvation. E. coli rpoBmutations that affect transcription termination efficiency alter the ratio of the shorter clpP-clpX transcript to the longer transcript. The E. coli rpoB3595 mutant, with an RNA polymerase that terminates transcription with lower efficiency than the wild type, accumulates a lower percentage of the shorter transcript during carbon starvation than does the isogenic wild-type strain. In contrast, the rpoB8 mutant, with an RNA polymerase that terminates transcription with higher efficiency than the wild type, produces a higher percentage of the shorter clpP-clpXtranscript when E. coli is in log phase. These and other data are consistent with the hypothesis that the shorter transcript results from premature transcription termination during production of the longer transcript.


2012 ◽  
Vol 78 (7) ◽  
pp. 2452-2455 ◽  
Author(s):  
Xuan Wang ◽  
Elliot N. Miller ◽  
Lorraine P. Yomano ◽  
K. T. Shanmugam ◽  
Lonnie O. Ingram

ABSTRACTExpression arrays were used to identify 4 putative oxidoreductases that were upregulated (>3-fold) by furfural (15 mM, 15 min). Plasmid expression of one (ucpA) increased furan tolerance in ethanologenic strain LY180 and wild-type strain W. DeletingucpAdecreased furfural tolerance. Although the mechanism remains unknown, the crypticucpAgene is now associated with a phenotype: furan resistance.


2013 ◽  
Vol 79 (15) ◽  
pp. 4586-4594 ◽  
Author(s):  
Masato Ikeda ◽  
Aya Miyamoto ◽  
Sumire Mutoh ◽  
Yuko Kitano ◽  
Mei Tajima ◽  
...  

ABSTRACTTo develop the infrastructure for biotin production through naturally biotin-auxotrophicCorynebacterium glutamicum, we attempted to engineer the organism into a biotin prototroph and a biotin hyperauxotroph. To confer biotin prototrophy on the organism, the cotranscribedbioBFgenes ofEscherichia coliwere introduced into theC. glutamicumgenome, which originally lacked thebioFgene. The resulting strain still required biotin for growth, but it could be replaced by exogenous pimelic acid, a source of the biotin precursor pimelate thioester linked to either coenzyme A (CoA) or acyl carrier protein (ACP). To bridge the gap between the pimelate thioester and its dedicated precursor acyl-CoA (or -ACP), thebioIgene ofBacillus subtilis, which encoded a P450 protein that cleaves a carbon-carbon bond of an acyl-ACP to generate pimeloyl-ACP, was further expressed in the engineered strain by using a plasmid system. This resulted in a biotin prototroph that is capable of thede novosynthesis of biotin. On the other hand, thebioYgene responsible for biotin uptake was disrupted in wild-typeC. glutamicum. Whereas the wild-type strain required approximately 1 μg of biotin per liter for normal growth, thebioYdisruptant (ΔbioY) required approximately 1 mg of biotin per liter, almost 3 orders of magnitude higher than the wild-type level. The ΔbioYstrain showed a similar high requirement for the precursor dethiobiotin, a substrate forbioB-encoded biotin synthase. To eliminate the dependency on dethiobiotin, thebioBgene was further disrupted in both the wild-type strain and the ΔbioYstrain. By selectively using the resulting two strains (ΔbioBand ΔbioBY) as indicator strains, we developed a practical biotin bioassay system that can quantify biotin in the seven-digit range, from approximately 0.1 μg to 1 g per liter. This bioassay proved that the engineered biotin prototroph ofC. glutamicumproduced biotin directly from glucose, albeit at a marginally detectable level (approximately 0.3 μg per liter).


Microbiology ◽  
2006 ◽  
Vol 152 (1) ◽  
pp. 153-160 ◽  
Author(s):  
Eric L. Buckles ◽  
Xiaolin Wang ◽  
C. Virginia Lockatell ◽  
David E. Johnson ◽  
Michael S. Donnenberg

The phoU gene is the last cistron in the pstSCAB–phoU operon and functions as a negative regulator of the Pho regulon. The authors previously identified a phoU mutant of extraintestinal pathogenic Escherichia coli strain CFT073 and demonstrated that this mutant was attenuated for survival in the murine model of ascending urinary tract infection. It is hypothesized that the PhoU protein might serve as a urovirulence factor by indirectly affecting the expression of virulence-related genes. In this study, the phoU mutant was further characterized and PhoU was confirmed as a virulence factor. Western blot analysis demonstrated that insertion of the transposon in the phoU gene disrupted the expression of PhoU. The phoU mutant had derepressed alkaline phosphatase activity under phosphate-excess and -limiting conditions. In single-challenge murine ascending urinary tract infection experiments, quantitative cultures of urine, bladder and kidney revealed no significant differences between the phoU mutant strain and the wild-type strain CFT073. However, in competitive colonization experiments, the phoU mutant strain was significantly out-competed by the wild-type strain in the kidneys and urine and recovered in lower amount in the bladder. Complementation of the phoU mutant with a plasmid containing the wild-type phoU gene restored the expression of PhoU and alkaline phosphate activity to wild-type levels and no significant difference in colonization was observed between the phoU mutant containing the complementing plasmid and wild-type in competitive colonization experiments. In human urine, the phoU mutant and wild-type grew comparably when inoculated independently, indicating that the attenuation observed was not due to a general growth defect. However, as observed in vivo, the wild-type out-competed the phoU mutant in competition growth experiments in human urine. These data indicate that PhoU contributes to efficient colonization of the murine urinary tract and add PhoU to a short list of confirmed urovirulence factors.


Sign in / Sign up

Export Citation Format

Share Document