scholarly journals The RcsCB His-Asp Phosphorelay System Is Essential To Overcome Chlorpromazine-Induced Stress in Escherichia coli

2002 ◽  
Vol 184 (10) ◽  
pp. 2850-2853 ◽  
Author(s):  
Annie Conter ◽  
Rachel Sturny ◽  
Claude Gutierrez ◽  
Kaymeuang Cam

ABSTRACT The RcsCB His-Asp phosphorelay system regulates the expression of several genes of Escherichia coli, but the molecular nature of the inducing signal is still unknown. We show here that treatment of an exponentially growing culture of E. coli with the cationic amphipathic compound chlorpromazine (CPZ) stimulates expression of a set of genes positively regulated by the RcsCB system. This induction is abolished in rcsB or rcsC mutant strains. In addition, treatment with CPZ inhibits growth. The wild-type strain is able to recover from this inhibition and resume growth after a period of adaptation. In contrast, strains deficient in the RcsCB His-Asp phosphorelay system are hypersensitive to CPZ. These results suggest that cells must express specific RcsCB-regulated genes in order to cope with the CPZ-induced stress. This is the first report of the essential role of the RcsCB system in a stress situation. These results also strengthen the notion that alterations of the cell envelope induce a signal recognized by the RcsC sensor.

2000 ◽  
Vol 66 (2) ◽  
pp. 632-637 ◽  
Author(s):  
Stuart B. Price ◽  
Chorng-Ming Cheng ◽  
Charles W. Kaspar ◽  
James C. Wright ◽  
Fred J. DeGraves ◽  
...  

ABSTRACT Acid resistance (AR) is important to survival of Escherichia coli O157:H7 in acidic foods and may play a role during passage through the bovine host. In this study, we examined the role in AR of the rpoS-encoded global stress response regulator ςS and its effect on shedding of E. coliO157:H7 in mice and calves. When assayed for each of the three AR systems identified in E. coli, an rpoS mutant (rpoS::pRR10) of E. coli O157:H7 lacked the glucose-repressed system and possessed reduced levels of both the arginine- and glutamate-dependent AR systems. After administration of the rpoS mutant and the wild-type strain (ATCC 43895) to ICR mice at doses ranging from 101 to 104 CFU, we found the wild-type strain in feces of mice given lower doses (102 versus 103 CFU) and at a greater frequency (80% versus 13%) than the mutant strain. The reduction in passage of the rpoS mutant was due to decreased AR, as administration of the mutant in 0.05 M phosphate buffer facilitated passage and increased the frequency of recovery in feces from 27 to 67% at a dose of 104 CFU. Enumeration ofE. coli O157:H7 in feces from calves inoculated with an equal mixture of the wild-type strain and the rpoS mutant demonstrated shedding of the mutant to be 10- to 100-fold lower than wild-type numbers. This difference in shedding between the wild-type strain and the rpoS mutant was statistically significant (P ≤ 0.05). Thus, ςS appears to play a role in E. coli O157:H7 passage in mice and shedding from calves, possibly by inducing expression of the glucose-repressed RpoS-dependent AR determinant and thus increasing resistance to gastrointestinal stress. These findings may provide clues for future efforts aimed at reducing or eliminating this pathogen from cattle herds.


2001 ◽  
Vol 183 (17) ◽  
pp. 5187-5197 ◽  
Author(s):  
Vanessa Sperandio ◽  
Alfredo G. Torres ◽  
Jorge A. Girón ◽  
James B. Kaper

ABSTRACT Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is responsible for outbreaks of bloody diarrhea and hemolytic-uremic syndrome in many countries. EHEC virulence mechanisms include the production of Shiga toxins (Stx) and formation of attaching and effacing (AE) lesions on intestinal epithelial cells. We recently reported that genes involved in the formation of the AE lesion were regulated by quorum sensing through autoinducer-2, which is synthesized by the product of the luxS gene. In this study we hybridized an E. coli gene array with cDNA synthesized from RNA that was extracted from EHEC strain 86-24 and its isogenicluxS mutant. We observed that 404 genes were regulated by luxS at least fivefold, which comprises approximately 10% of the array genes; 235 of these genes were up-regulated and 169 were down-regulated in the wild-type strain compared to in theluxS mutant. Down-regulated genes included several involved in cell division, as well as ribosomal and tRNA genes. Consistent with this pattern of gene expression, theluxS mutant grows faster than the wild-type strain (generation times of 37.5 and 60 min, respectively, in Dulbecco modified Eagle medium). Up-regulated genes included several involved in the expression and assembly of flagella, motility, and chemotaxis. Using operon::lacZ fusions to class I, II, and III flagellar genes, we were able to confirm this transcriptional regulation. We also observed fewer flagella by Western blotting and electron microscopy and decreased motility halos in semisolid agar in the luxS mutant. The average swimming speeds for the wild-type strain and the luxS mutant are 12.5 and 6.6 μm/s, respectively. We also observed an increase in the production of Stx due to quorum sensing. Genes encoding Stx, which are transcribed along with λ-like phage genes, are induced by an SOS response, and genes involved in the SOS response were also regulated by quorum sensing. These results indicate that quorum sensing is a global regulatory mechanism for basic physiological functions of E. coli as well as for virulence factors.


1972 ◽  
Vol 18 (6) ◽  
pp. 909-915 ◽  
Author(s):  
A. P. Singh ◽  
K.-J. Cheng ◽  
J. W. Costerton ◽  
E. S. Idziak ◽  
J. M. Ingram

The site of the cell barrier to actinomycin-D uptake was studied using a wild-type Escherichia coli strain P and its cell envelope-defective filamentous mutants, strains 6γ and 12γ, both of which 'leak' β-galactosidase and alkaline phosphatase into the medium during growth indicating both membrane and cell-wall defects. Actinomycin-D entered the cells of these two mutant strains as evidenced by the inhibition of both 14C-uracil incorporation and synthesis of the induced β-galactosidase system. Under similar conditions, no inhibition occurred in the wild-type strain and its sucrose-lysozyme prepared spheroplasts. Actinomycin-D did, however, inhibit the above-mentioned systems in the wild-type sucrose-lysozyme spheroplasts prepared in the presence of 2 mM EDTA. The experimental data indicate that although the cell wall may act as a primary barrier or sieve to actinomycin-D, the cytoplasmic membrane should be considered the final and determinative barrier to this antibiotic.


2020 ◽  
Vol 6 (2) ◽  
pp. 86
Author(s):  
Marina Zoppo ◽  
Fabrizio Fiorentini ◽  
Cosmeri Rizzato ◽  
Mariagrazia Di Luca ◽  
Antonella Lupetti ◽  
...  

The Candida parapsilosis genome encodes for five agglutinin-like sequence (Als) cell-wall glycoproteins involved in adhesion to biotic and abiotic surfaces. The work presented here is aimed at analyzing the role of the two still uncharacterized ALS genes in C. parapsilosis, CpALS4790 and CpALS0660, by the generation and characterization of CpALS4790 and CpALS066 single mutant strains. Phenotypic characterization showed that both mutant strains behaved as the parental wild type strain regarding growth rate in liquid/solid media supplemented with cell-wall perturbing agents, and in the ability to produce pseudohyphae. Interestingly, the ability of the CpALS0660 null mutant to adhere to human buccal epithelial cells (HBECs) was not altered when compared with the wild-type strain, whereas deletion of CpALS4790 led to a significant loss of the adhesion capability. RT-qPCR analysis performed on the mutant strains in co-incubation with HBECs did not highlight significant changes in the expression levels of others ALS genes. In vivo experiments in a murine model of vaginal candidiasis indicated a significant reduction in CFUs recovered from BALB/C mice infected with each mutant strain in comparison to those infected with the wild type strain, confirming the involvement of CpAls4790 and CpAls5600 proteins in C. parapsilosis vaginal candidiasis in mice.


2000 ◽  
Vol 182 (23) ◽  
pp. 6630-6637 ◽  
Author(s):  
Chin Li ◽  
Yi Ping Tao ◽  
Lee D. Simon

ABSTRACT Transcription of the clpP-clpX operon ofEscherichia coli leads to the production of two different sizes of transcripts. In log phase, the level of the longer transcript is higher than the level of the shorter transcript. Soon after the onset of carbon starvation, the level of the shorter transcript increases significantly, and the level of the longer transcript decreases. The longer transcript consists of the entireclpP-clpX operon, whereas the shorter transcript contains the entire clpP gene but none of the clpXcoding sequence. The RpoH protein is required for the increase in the level of the shorter transcript during carbon starvation. Primer extension experiments suggest that there is increased usage of the ς32-dependent promoter of the clpP-clpXoperon within 15 min after the start of carbon starvation. Expression of the clpP-clpX operon from the promoters upstream of theclpP gene decreases to a very low level by 20 min after the onset of carbon starvation. Various pieces of evidence suggest, though they do not conclusively prove, that production of the shorter transcript may involve premature termination of the longer transcript. The half-life of the shorter transcript is much less than that of the longer transcript during carbon starvation. E. coli rpoBmutations that affect transcription termination efficiency alter the ratio of the shorter clpP-clpX transcript to the longer transcript. The E. coli rpoB3595 mutant, with an RNA polymerase that terminates transcription with lower efficiency than the wild type, accumulates a lower percentage of the shorter transcript during carbon starvation than does the isogenic wild-type strain. In contrast, the rpoB8 mutant, with an RNA polymerase that terminates transcription with higher efficiency than the wild type, produces a higher percentage of the shorter clpP-clpXtranscript when E. coli is in log phase. These and other data are consistent with the hypothesis that the shorter transcript results from premature transcription termination during production of the longer transcript.


2005 ◽  
Vol 187 (19) ◽  
pp. 6678-6682 ◽  
Author(s):  
Tokiko Yoshimura-Suzuki ◽  
Ikuko Sagami ◽  
Nao Yokota ◽  
Hirofumi Kurokawa ◽  
Toru Shimizu

ABSTRACT Heme-regulated phosphodiesterase from Escherichia coli (DOSEc) catalyzes the hydrolysis of cyclic AMP (cAMP) in vitro and is regulated by the redox state of the bound heme. Changes in the redox state result in alterations in the three-dimensional structure of the enzyme, which is then transmitted to the functional domain to switch catalysis on or off. Because DOSEc was originally cloned from E. coli genomic DNA, it has not been known whether it is actually expressed in wild-type E. coli. In addition, the turnover number of DOSEc using cAMP as a substrate is only 0.15 min−1, which is relatively low for a physiologically relevant enzyme. In the present study, we demonstrated for the first time that the DOSEc gene and protein are expressed in wild-type E. coli, especially under aerobic conditions. We also developed a DOSEc gene knockout strain (Δdos). Interestingly, the knockout of dos caused excess accumulation of intracellular cAMP (26-fold higher than in the wild-type strain) under aerobic conditions, whereas accumulation of cAMP was not observed under anaerobic conditions. We also found differences in cell morphology and growth rate between the mutant cells and the wild-type strain. The changes in the knockout strain were partially complemented by introducing an expression plasmid for dos. Thus, the present study revealed that expression of DOSEc is regulated according to environmental O2 availability at the transcriptional level and that the concentration of cAMP in cells is regulated by DOSEc expression.


2019 ◽  
Author(s):  
Philippe Vogeleer ◽  
Antony T. Vincent ◽  
Samuel M. Chekabab ◽  
Steve J. Charette ◽  
Alexey Novikov ◽  
...  

ABSTRACTIn open environments such as water, enterohemorrhagicEscherichia coliO157:H7 responds to inorganic phosphate (Pi) starvation by inducing the Pho regulon controlled by PhoB. The phosphate-specific transport (Pst) system is the high-affinity Pi transporter. In the Δpstmutant, PhoB is constitutively activated and regulates the expression of genes from the Pho regulon. InE. coliO157:H7, the Δpstmutant, biofilm, and autoagglutination were increased. In the double-deletion mutant ΔpstΔphoB, biofilm and autoagglutination were similar to the wild-type strain, suggesting that PhoB is involved. We investigated the relationship between PhoB activation and enhanced biofilm formation by screening a transposon mutant library derived from Δpstmutant for decreased autoagglutination and biofilms mutants. Lipopolysaccharide (LPS) genes involved in the synthesis of the LPS core were identified. Transcriptomic studies indicate the influence of Pi-starvation andpstmutation on LPS biosynthetic gene expression. LPS analysis indicated that the O-antigen was deficient in the Δpstmutant. Interestingly,waaH, encoding a glycosyltransferase associated with LPS modifications inE. coliK-12, was highly expressed in the Δpstmutant ofE. coliO157:H7. Deletion ofwaaHfrom the Δpstmutant and from the wild-type strain grown in Pi-starvation conditions decreased the biofilm formation but without affecting LPS. Our findings suggest that LPS core is involved in the autoagglutination and biofilm phenotypes of the Δpstmutant and that WaaH plays a role in biofilm in response to Pi-starvation. This study highlights the importance of Pi-starvation in biofilm formation of E. coli O157:H7, which may affect its transmission and persistence.IMPORTANCEEnterohemorrhagicEscherichia coliO157:H7 is a human pathogen responsible for bloody diarrhea and renal failures. In the environment, O157:H7 can survive for prolonged periods of time under nutrient-deprived conditions. Biofilms are thought to participate in this environmental lifestyle. Previous reports have shown that the availability of extracellular inorganic phosphate (Pi) affected bacterial biofilm formation; however, nothing was known about O157:H7 biofilm formation. Our results show that O157:H7 membrane undergoes modifications upon PhoB activation leading to increased biofilm formation. A mutation in the Pst system results in reduced amount of the smooth type LPS and that this could influence the biofilm composition. This demonstrates how theE. coliO157:H7 adapts to Pi starvation increasing its ability to occupy different ecological niches.


1978 ◽  
Vol 24 (5) ◽  
pp. 629-631 ◽  
Author(s):  
La Verne Russell ◽  
Hiroshi Yamazaki

The amount of asparaginase II in an Escherichia coli wild-type strain (cya+, crp+) markedly increased upon a shift from aerobic to anaerobic growth. However, no such increase occurred in a mutant (cya) lacking cyclic AMP synthesis unless supplemented with exogenous cyclic AMP. Since a mutant (crp) deficient in cyclic AMP receptor protein also did not support the anaerobic formation of this enzyme, it is concluded that the formation of E. coli asparaginase II depends on both cyclic AMP and cyclic AMP receptor protein.


2009 ◽  
Vol 191 (17) ◽  
pp. 5538-5548 ◽  
Author(s):  
Pablo I. Nikel ◽  
Jiangfeng Zhu ◽  
Ka-Yiu San ◽  
Beatriz S. Méndez ◽  
George N. Bennett

ABSTRACT Escherichia coli has several elaborate sensing mechanisms for response to availability of oxygen and other electron acceptors, as well as the carbon source in the surrounding environment. Among them, the CreBC and ArcAB two-component signal transduction systems are responsible for regulation of carbon source utilization and redox control in response to oxygen availability, respectively. We assessed the role of CreBC and ArcAB in regulating the central carbon metabolism of E. coli under microaerobic conditions by means of 13C-labeling experiments in chemostat cultures of a wild-type strain, ΔcreB and ΔarcA single mutants, and a ΔcreB ΔarcA double mutant. Continuous cultures were conducted at D = 0.1 h−1 under carbon-limited conditions with restricted oxygen supply. Although all experimental strains metabolized glucose mainly through the Embden-Meyerhof-Parnas pathway, mutant strains had significantly lower fluxes in both the oxidative and the nonoxidative pentose phosphate pathways. Significant differences were also found at the pyruvate branching point. Both pyruvate-formate lyase and the pyruvate dehydrogenase complex contributed to acetyl-coenzyme A synthesis from pyruvate, and their activity seemed to be modulated by both ArcAB and CreBC. Strains carrying the creB deletion showed a higher biomass yield on glucose compared to the wild-type strain and its ΔarcA derivative, which also correlated with higher fluxes from building blocks to biomass. Glyoxylate shunt and lactate dehydrogenase were active mainly in the ΔarcA strain. Finally, it was observed that the tricarboxylic acid cycle reactions operated in a rather cyclic fashion under our experimental conditions, with reduced activity in the mutant strains.


2013 ◽  
Vol 81 (9) ◽  
pp. 3089-3098 ◽  
Author(s):  
Erica L. Raterman ◽  
Daniel D. Shapiro ◽  
Daniel J. Stevens ◽  
Kevin J. Schwartz ◽  
Rodney A. Welch

ABSTRACTDuring urinary tract infections (UTIs), uropathogenicEscherichia colimust maintain a delicate balance between sessility and motility to achieve successful infection of both the bladder and kidneys. Previous studies showed that cyclic dimeric GMP (c-di-GMP) levels aid in the control of the transition between motile and nonmotile states inE. coli. TheyfiRNBlocus inE. coliCFT073 contains genes for YfiN, a diguanylate cyclase, and its activity regulators, YfiR and YfiB. Deletion ofyfiRyielded a mutant that was attenuated in both the bladder and the kidneys when tested in competition with the wild-type strain in the murine model of UTI. A doubleyfiRNmutant was not attenuated in the mouse model, suggesting that unregulated YfiN activity and likely increased cytoplasmic c-di-GMP levels cause a survival defect. Curli fimbriae and cellulose production were increased in theyfiRmutant. Expression ofyhjH, a gene encoding a proven phosphodiesterase, in CFT073 ΔyfiRsuppressed the overproduction of curli fimbriae and cellulose and further verified that deletion ofyfiRresults in c-di-GMP accumulation. Additional deletion ofcsgDandbcsA, genes necessary for curli fimbriae and cellulose production, respectively, returned colonization levels of theyfiRdeletion mutant to wild-type levels. Peroxide sensitivity assays and iron acquisition assays displayed no significant differences between theyfiRmutant and the wild-type strain. These results indicate that dysregulation of c-di-GMP production results in pleiotropic effects that disableE. coliin the urinary tract and implicate the c-di-GMP regulatory system as an important factor in the persistence of uropathogenicE. coli in vivo.


Sign in / Sign up

Export Citation Format

Share Document