scholarly journals Comparative Characterization of Complete and Truncated Forms of Lactobacillus amylovorus α-Amylase and Role of the C-Terminal Direct Repeats in Raw-Starch Binding

2000 ◽  
Vol 66 (8) ◽  
pp. 3350-3356 ◽  
Author(s):  
R. Rodriguez Sanoja ◽  
J. Morlon-Guyot ◽  
J. Jore ◽  
J. Pintado ◽  
N. Juge ◽  
...  

ABSTRACT Two constructs derived from the α-amylase gene (amyA) of Lactobacillus amylovorus were expressed inLactobacillus plantarum, and their expression products were purified, characterized, and compared. These products correspond to the complete (AmyA) and truncated (AmyAΔ) forms of α-amylase; AmyAΔ lacks the 66-kDa carboxyl-terminal direct-repeating-unit region. AmyA and AmyAΔ exhibit similar amylase activities towards a range of soluble substrates (amylose, amylopectin and α-cyclodextrin, and soluble starch). The specific activities of the enzymes towards soluble starch are similar, but the KM andV max values of AmyAΔ were slightly higher than those of AmyA, whereas the thermal stability of AmyAΔ was lower than that of AmyA. In contrast to AmyA, AmyAΔ is unable to bind to β-cyclodextrin and is only weakly active towards glycogen. More striking is the fact that AmyAΔ cannot bind or hydrolyze raw starch, demonstrating that the carboxyl-terminal repeating-unit domain of AmyA is required for raw-starch binding activity.

Blood ◽  
1986 ◽  
Vol 67 (1) ◽  
pp. 19-26 ◽  
Author(s):  
AD Michelson ◽  
J Loscalzo ◽  
B Melnick ◽  
BS Coller ◽  
RI Handin

The binding of von Willebrand factor (vWF) to platelet membrane glycoprotein Ib (GpIb) facilitates platelet adhesion to vascular subendothelium. In this study, we provide evidence that the vWF binding site is on glycocalicin (GC), a proteolytic fragment of GpIb, and we examine the role of the carbohydrate portion of GC on that binding. The binding to platelets of 6D1, a monoclonal antibody that recognizes an epitope on GpIb and blocks ristocetin-induced vWF binding to platelets, was inhibited by purified GC. In addition, purified GC inhibited ristocetin-dependent binding of 125I-labeled vWF to platelets. Since GC contains 60% carbohydrate by weight, we assessed the role of carbohydrate sequences on its interaction with antibody 6D1 and vWF. Based on the known sequence of the major oligosaccharide chain of GC--N- acetyl neuraminic acid, galactose, N-acetyl glucosamine, N-acetyl galactosamine--we treated GC sequentially with neuraminidase, beta- galactosidase, and beta-N-acetylglucosaminidase. Removal of sialic acid and galactose residues did not affect GC binding. Removal of N-acetyl glucosamine residues did not affect GC binding to 6D1 but did decrease the ability of GC to inhibit vWF binding to platelets, increasing the concentration needed to inhibit binding by 50% (IC50) 40-fold. This suggests that a portion of the oligosaccharide chains on GC contributes to the vWF binding activity of this molecule.


1999 ◽  
Vol 65 (10) ◽  
pp. 4652-4658 ◽  
Author(s):  
Kohji Ohdan ◽  
Takashi Kuriki ◽  
Hiroki Kaneko ◽  
Jiro Shimada ◽  
Toshikazu Takada ◽  
...  

ABSTRACT Complete (Ba-L) and truncated (Ba-S) forms of α-amylases fromBacillus subtilis X-23 were purified, and the amino- and carboxyl-terminal amino acid sequences of Ba-L and Ba-S were determined. The amino acid sequence deduced from the nucleotide sequence of the α-amylase gene indicated that Ba-S was produced from Ba-L by truncation of the 186 amino acid residues at the carboxyl-terminal region. The results of genomic Southern analysis and Western analysis suggested that the two enzymes originated from the same α-amylase gene and that truncation of Ba-L to Ba-S occurred during the cultivation of B. subtilis X-23 cells. Although the primary structure of Ba-S was approximately 28% shorter than that of Ba-L, the two enzyme forms had the same enzymatic characteristics (molar catalytic activity, amylolytic pattern, transglycosylation ability, effect of pH on stability and activity, optimum temperature, and raw starch-binding ability), except that the thermal stability of Ba-S was higher than that of Ba-L. An analysis of the secondary structure as well as the predicted three-dimensional structure of Ba-S showed that Ba-S retained all of the necessary domains (domains A, B, and C) which were most likely to be required for functionality as α-amylase.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Alexsandro Sobreira Galdino ◽  
Roberto Nascimento Silva ◽  
Muriele Taborda Lottermann ◽  
Alice Cunha Morales Álvares ◽  
Lídia Maria Pepe de Moraes ◽  
...  

An extracellular alpha-amylase (Amy1) whose gene from Cryptococcus flavus was previously expressed in Saccharomyces cerevisiae was purified to homogeneity (67 kDa) by ion-exchange and molecular exclusion chromatography. The enzyme was activated by NH4+ and inhibited by Cu+2 and Hg+2. Significant biochemical and structural discrepancies between wild-type and recombinant α-amylase with respect to Km values, enzyme specificity, and secondary structure content were found. Far-UV CD spectra analysis at pH 7.0 revealed the high thermal stability of both proteins and the difference in folding pattern of Amy1 compared with wild-type amylase from C. flavus, which reflected in decrease (10-fold) of enzymatic activity of recombinant protein. Despite the differences, the highest activity of Amy1 towards soluble starch, amylopectin, and amylase, in contrast with the lowest activity of Amy1w, points to this protein as being of paramount biotechnological importance with many applications ranging from food industry to the production of biofuels.


Blood ◽  
1986 ◽  
Vol 67 (1) ◽  
pp. 19-26 ◽  
Author(s):  
AD Michelson ◽  
J Loscalzo ◽  
B Melnick ◽  
BS Coller ◽  
RI Handin

Abstract The binding of von Willebrand factor (vWF) to platelet membrane glycoprotein Ib (GpIb) facilitates platelet adhesion to vascular subendothelium. In this study, we provide evidence that the vWF binding site is on glycocalicin (GC), a proteolytic fragment of GpIb, and we examine the role of the carbohydrate portion of GC on that binding. The binding to platelets of 6D1, a monoclonal antibody that recognizes an epitope on GpIb and blocks ristocetin-induced vWF binding to platelets, was inhibited by purified GC. In addition, purified GC inhibited ristocetin-dependent binding of 125I-labeled vWF to platelets. Since GC contains 60% carbohydrate by weight, we assessed the role of carbohydrate sequences on its interaction with antibody 6D1 and vWF. Based on the known sequence of the major oligosaccharide chain of GC--N- acetyl neuraminic acid, galactose, N-acetyl glucosamine, N-acetyl galactosamine--we treated GC sequentially with neuraminidase, beta- galactosidase, and beta-N-acetylglucosaminidase. Removal of sialic acid and galactose residues did not affect GC binding. Removal of N-acetyl glucosamine residues did not affect GC binding to 6D1 but did decrease the ability of GC to inhibit vWF binding to platelets, increasing the concentration needed to inhibit binding by 50% (IC50) 40-fold. This suggests that a portion of the oligosaccharide chains on GC contributes to the vWF binding activity of this molecule.


Author(s):  
Gitanjali Vyas ◽  
Nivedita Sharma ◽  
Nisha Sharma

A novel thermoalkalophilic α-amylase producing bacterial strain Bacillus sonorensis GV2 |KJ775811.1| was isolated from mushroom compost. The purification of α-amylase was performed through different chromatography techniques. After purification with SDS-PAGE and Sephadex G-75 gel filtration, the molecular weight of monomeric α-amylase was found to be 45 kDa. The enzyme showed an optimal activity over a wide range of temperature and pH of 35-60oC and 7-11, respectively. The effect of divalent ions i.e. Mg2+ and Ca2+ showed a positive increase in enzyme activity. This enzyme is unique in a sense that it also exhibited a considerable raw corn starch hydrolyzing activity at 55oC. The end products when subjected to TLC which were identified as main maltooligosaccharides, proving the endo action of an enzyme. The Vmax and Km values of Bacillus sonorensis GV2 α-amylase were found to be 1347 μmol/mg/min and 3.46  mMol/ml. The MALDI peptide mass fingerprint analysis of the reduced and carboxymethylated amylase digested with chymotrypsin indicated that this partial amino acid sequence was homologous by a score of 6 with UDP transferalyase. All these findings suggests about the potential role of this α-amylase for raw starch degrading applications in the relevant industry.


Author(s):  
L. T. Germinario

Understanding the role of metal cluster composition in determining catalytic selectivity and activity is of major interest in heterogeneous catalysis. The electron microscope is well established as a powerful tool for ultrastructural and compositional characterization of support and catalyst. Because the spatial resolution of x-ray microanalysis is defined by the smallest beam diameter into which the required number of electrons can be focused, the dedicated STEM with FEG is the instrument of choice. The main sources of errors in energy dispersive x-ray analysis (EDS) are: (1) beam-induced changes in specimen composition, (2) specimen drift, (3) instrumental factors which produce background radiation, and (4) basic statistical limitations which result in the detection of a finite number of x-ray photons. Digital beam techniques have been described for supported single-element metal clusters with spatial resolutions of about 10 nm. However, the detection of spurious characteristic x-rays away from catalyst particles produced images requiring several image processing steps.


Sign in / Sign up

Export Citation Format

Share Document