scholarly journals Applicability of an Arrhenius Model for the Combined Effect of Temperature and CO2 Packaging on the Spoilage Microflora of Fish

2000 ◽  
Vol 66 (8) ◽  
pp. 3528-3534 ◽  
Author(s):  
Konstantinos P. Koutsoumanis ◽  
Petros S. Taoukis ◽  
Eleftherios H. Drosinos ◽  
George-John E. Nychas

ABSTRACT The temperature behavior of the natural microflora on the Mediterranean fish red mullet (Mullus barbatus) was examined as a case study. The growth of the spoilage bacteriaPseudomonas spp., Shewanella putrefaciens,Brochothrix thermosphacta, and lactic acid bacteria was modeled as a function of temperature and the concentration of carbon dioxide in modified atmosphere packaging. Combined models were developed and comparatively assessed based on polynomial, Belehradek, and Arrhenius equations. The activation energy parameter of the Arrhenius model, EA , was independent of the packaging atmosphere and ranged from 75 to 85 kJ/mol for the different bacteria, whereas the preexponential constant decreased exponentially with the packaging CO2 concentration. We evaluated the applicability of the models developed by using experimental bacterial growth rates obtained from 42 independent experiments performed with three Mediterranean fish species and growth rates predicted from the models under the same temperature and packaging conditions. The accuracy factor and bias factor were used as statistical tools for evaluation, and the developed Arrhenius model and the Belehradek model were judged satisfactory overall.

2004 ◽  
Vol 67 (12) ◽  
pp. 2703-2711 ◽  
Author(s):  
KONSTANTINOS P. KOUTSOUMANIS ◽  
LAURA V. ASHTON ◽  
IFIGENIA GEORNARAS ◽  
KEITH E. BELK ◽  
JOHN A. SCANGA ◽  
...  

The survival and growth of Listeria monocytogenes and spoilage microflora during storage of fresh beef subjected to different decontamination treatments was studied. Fresh beef inoculated with a five-strain mixture of L. monocytogenes (5.18 log CFU/cm2) was left untreated (control) or was immersed (30 s) in hot water (HW; 75°C), 2% lactic acid (LA; 55°C), hot water followed by lactic acid (HW-LA), or lactic acid followed by hot water (LA-HW) and then stored aerobically at 4, 10, and 25°C for 25, 17, and 5 days, respectively. Initial populations of L. monocytogenes were reduced by 0.82 (HW), 1.43 (LA), 2.73 (HW-LA), and 2.68 (LA-HW) log CFU/cm2. During storage, the pathogen grew at higher rates in HW than in control samples at all storage temperatures. Acid decontamination treatments (LA, HW-LA, and LA-HW) resulted in a weaker inhibition of L. monocytogenes (P < 0.05) at 25°C than at 4 and 10°C. In general, the order of effectiveness of treatments was HW-LA > LA > LA-HW > HW > control at all storage temperatures tested. In untreated samples, the spoilage microflora was dominated by pseudomonads, while lactic acid bacteria, Enterobacteriaceae, and yeasts remained at lower concentrations during storage. Brochothrix thermosphacta was detected periodically in only a limited number of samples. Although decontamination with HW did not affect the above spoilage microbial profile, acid treatments shifted the predominant microflora in the direction of yeasts and gram-positive bacteria (lactic acid bacteria). Overall, the results of the present study indicate that decontamination with LA and combinations of LA and HW could limit growth of L. monocytogenes and inhibit pseudomonads, which are the main spoilage bacteria of fresh beef stored under aerobic conditions. However, to optimize the efficacy of such treatments, they must be applied in the appropriate sequence and followed by effective temperature control.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Filippo Giarratana ◽  
Luca Nalbone ◽  
Graziella Ziino ◽  
Alessandro Giuffrida ◽  
Felice Panebianco

The aim of this work is to study the effect of temperature fluctuations on spoilage microbial flora behaviour of a semi-preserved seafood product in modified atmosphere packaging (MAP) as well as to find correct interpretation criteria for simulating temperature fluctuations during storage tests. The study concerned 54 packages of “Octopus carpaccio” that were grouped in three batches and stored at 3 different temperature profiles: the first (16 packages - Group 4°C) was stored at 4±0.5°C; the second (16 packages - Group 8°C) was stored at 8±0.5°C; the third (16 packages - Group F) was stored under a fluctuating temperature regime between 2°C and 14°C. Spoilage microflora, pH and AW has been monitored, at regular intervals, along the storage period (44 days). A predictive model was constructed according to the accredited scientific literature and validated against the observed growth curves of the above three groups. Afterwards, the predictive model has been used setting the temperature at the mean value of fluctuations (6.72°C), at the kinetic mean value of fluctuations (7.80°C) and at the 75th percentile value of fluctuations (11.14°C). The best fitting to the observed data was obtained with the kinetic mean temperature value and this result shows that this parameter can be proposed to reproduce the temperature fluctuation along the distribution and the domestic storage when a storage test has to be carried out.


2009 ◽  
Vol 72 (11) ◽  
pp. 2278-2283 ◽  
Author(s):  
A. R. HOYLE ◽  
J. C. BROOKS ◽  
L. D. THOMPSON ◽  
W. PALMORE ◽  
T. P. STEPHENS ◽  
...  

Lactic acid bacteria (LAB) can decrease numbers of Escherichia coli O157:H7 and Salmonella in ground beef during storage. Two dose-titration studies were conducted in ground beef to determine dose levels of LAB needed to inhibit the pathogens. A second study evaluated whether LAB masked changes typically associated with the spoilage of ground beef displayed under refrigerated (0°C) or abusive (10°C) temperatures packaged in both traditional overwrap (TOP) and modified atmosphere packaging (MAP; 80% O2–20% CO2). Microbial analyses were conducted to determine spoilage endpoints and pathogen reduction. In the dose-titration study, Salmonella was reduced by 3 log cycles at all doses (106,107, and 108 LAB per g) after 3 days of storage and was eliminated after 5 days of storage. E. coli O157:H7 was reduced by 2 log cycles at all dosages after 3 days of storage and by 3 log cycles after 5 days of storage. In the spoilage studies, as expected, total aerobic plate counts and LAB populations in LAB-inoculated samples were higher than the controls initially, but the counts were similar near the end of the study. While total spoilage bacteria generally increased over time, very few differences existed between treatments stored at 0°C and 10°C in coliforms , Brochothrix thermosphacta, yeasts and molds, and Pseudomonas spp. counts for both the TOP and MAP samples. We conclude that LAB could potentially be added to ground beef in TOP and MAP as a processing intervention for E. coli O157:H7 and Salmonella without masking microbial spoilage characteristics.


1990 ◽  
Vol 55 (7) ◽  
pp. 1691-1707 ◽  
Author(s):  
Miloslav Karel ◽  
Jiří Hostomský ◽  
Jaroslav Nývlt ◽  
Axel König

Crystal growth rates of copper sulphate pentahydrate (CuSO4.5 H2O) determined by different authors and methods are compared. The methods included in this comparison are: (i) Measurement on a fixed crystal suspended in a streaming solution, (ii) measurement on a rotating disc, (iii) measurement in a fluidized bed, (iv) measurement in an agitated suspension. The comparison involves critical estimation of the supersaturation used in measurements, of shape factors used for data treatment and a correction for the effect of temperature. Conclusions are drawn for the choice of values to be specified when data of crystal growth rate measurements are published.


Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1754
Author(s):  
Anlaug Ådland Hansen ◽  
Solveig Langsrud ◽  
Ingunn Berget ◽  
Mari Øvrum Gaarder ◽  
Birgitte Moen

Improved quality control and prolonged shelf life are important actions in preventing food waste. To get an overview of the bacterial diversity of fillets from live stored mature Atlantic cod, bacterial isolates were identified before and after storage (air and vacuum) and freezing/thawing. Based on the load of dominating bacteria, the effect of different packaging methods and a short freezing/thawing process on prolonged shelf-life was evaluated (total viable counts, bacteriota, sensory attributes, and volatile components). Hand filleted (strict hygiene) cod fillets had a low initial bacterial load dominated by the spoilage organism Photobacterium, whereas industrially produced fillets had higher bacterial loads and diversity (Pseudomonas, Arthrobacter, Psychrobacter, Shewanella). The identified bacteria after storage in vacuum or air were similar to the initially identified bacteria. Bacteriota analysis showed that a short time freezing/thawing process reduced Photobacterium while modified atmosphere packaging (MAP; 60%CO2/40%O2 or 60%CO2/40%N2) inhibited the growth of important spoilage bacteria (Photobacterium, Shewanella, Pseudomonas) and allowed the growth of Carnobacterium/Carnobacteriaceae and Acinetobacter. Despite being dominated by Photobacterium, fresh fillets stored in MAP 60%CO2/40%N2 demonstrated better sensory quality after 13 days of storage than fillets stored in MAP 60%CO2/40%O2 (dominated by Carnobacterium/Carnobacteriaceae). Carnobacterium spp. or other members of Carnobacteriaceae may therefore be potential spoilage organisms in cod when other spoilage bacteria are reduced or inhibited.


2008 ◽  
Vol 71 (12) ◽  
pp. 2429-2435 ◽  
Author(s):  
SILVIA A. DOMINGUEZ ◽  
DONALD W. SCHAFFNER

The presence of Salmonella in raw poultry is a well-recognized risk factor for foodborne illness. The objective of this study was to develop and validate a mathematical model that predicts the growth of Salmonella in raw poultry stored under aerobic conditions at a variety of temperatures. One hundred twelve Salmonella growth rates were extracted from 12 previously published studies. These growth rates were used to develop a square-root model relating the growth rate of Salmonella to storage temperature. Model predictions were compared to growth rate measurements collected in our laboratory for four poultry-specific Salmonella strains (two antibiotic-resistant and two nonresistant strains) inoculated onto raw chicken tender-loins. Chicken was inoculated at two levels (103 CFU/cm2 and ≤ 10 CFU/cm2) and incubated at temperatures ranging from 10 to 37°C. Visual inspection of the data, bias and accuracy factors, and comparison with two other published models were used to analyze the performance of the new model. Neither antibiotic resistance nor inoculum size affected Salmonella growth rates. The presence of spoilage microflora did not appear to slow the growth of Salmonella. Our model provided intermediate predicted growth rates when compared with the two other published models. Our model predicted slightly faster growth rates than those observed in inoculated chicken in the temperature range of 10 to 28°C but slightly slower growth rates than those observed between 30 and 37°C. Slightly negative bias factors were obtained in every case (−5to −3%); however, application of the model may be considered fail-safe for storage temperatures below 28°C.


2017 ◽  
Vol 81 (2) ◽  
pp. 308-315 ◽  
Author(s):  
Vijay K. Juneja ◽  
Abhinav Mishra ◽  
Abani K. Pradhan

ABSTRACT Kinetic growth data for Bacillus cereus grown from spores were collected in cooked beans under several isothermal conditions (10 to 49°C). Samples were inoculated with approximately 2 log CFU/g heat-shocked (80°C for 10 min) spores and stored at isothermal temperatures. B. cereus populations were determined at appropriate intervals by plating on mannitol–egg yolk–polymyxin agar and incubating at 30°C for 24 h. Data were fitted into Baranyi, Huang, modified Gompertz, and three-phase linear primary growth models. All four models were fitted to the experimental growth data collected at 13 to 46°C. Performances of these models were evaluated based on accuracy and bias factors, the coefficient of determination (R2), and the root mean square error. Based on these criteria, the Baranyi model best described the growth data, followed by the Huang, modified Gompertz, and three-phase linear models. The maximum growth rates of each primary model were fitted as a function of temperature using the modified Ratkowsky model. The high R2 values (0.95 to 0.98) indicate that the modified Ratkowsky model can be used to describe the effect of temperature on the growth rates for all four primary models. The acceptable prediction zone (APZ) approach also was used for validation of the model with observed data collected during single and two-step dynamic cooling temperature protocols. When the predictions using the Baranyi model were compared with the observed data using the APZ analysis, all 24 observations for the exponential single rate cooling were within the APZ, which was set between −0.5 and 1 log CFU/g; 26 of 28 predictions for the two-step cooling profiles also were within the APZ limits. The developed dynamic model can be used to predict potential B. cereus growth from spores in beans under various temperature conditions or during extended chilling of cooked beans.


Author(s):  
Zengliang Gao ◽  
Weiming Sun ◽  
Weiya Jin ◽  
Ying Wang ◽  
Fang Zhang

Fatigue failures often take place in high temperature pressure vessels and equipment because of fluctuation of pressure and temperature. Fatigue crack growth properties of materials at high temperatures are very important for safety assessment of high temperature equipment. A series of fatigue crack growth tests were carried out, and fatigue crack growth rates were determined at 25∼500°C for typical steels 316L and 16MnR. The laws of fatigue crack growth of two materials at different temperatures and the effect of temperature on fatigue crack growth rates were studied. The results show that the crack growth rates increase with temperature for 316L steel. Both the exponent n and constant C for Paris law change with temperature. The fatigue cracks of 16MnR propagate at 150 °C and 300 °C more slowly than at room temperature and 425 °C. The fatigue crack growth rate at 425 °C is the highest for temperature range of 25–425 °C.


2005 ◽  
Vol 68 (3) ◽  
pp. 538-543 ◽  
Author(s):  
JOSÉ M. RODRÍGUEZ-CALLEJA ◽  
MARGARET F. PATTERSON ◽  
ISABEL GARCÍA-LÓPEZ ◽  
JESÚS A. SANTOS ◽  
ANDRÉS OTERO ◽  
...  

The relative incidence of Psychrobacter spp. in rabbit meat, the radioresistance of these bacteria, and the growth of nonirradiated and irradiated psychrobacter isolates, alone and in coculture, during chilled storage of inoculated sterile rabbit meat was investigated. Psychrobacter spp. accounted for 4.2% of the storage psychrotrophic flora of 30 rabbit carcasses. The radiation D10-values of 10 Psychrobacter isolates, irradiated at 4°C in minced rabbit meat, ranged from 0.8 to 2.0 kGy, with significant (P < 0.05) differences among strains. Over 12 days of storage at 4°C, pure cultures of two nonirradiated psychrobacter strains (D10 = 2 kGy) were capable of substantial increases (up to 3 log CFU/g) in sterile rabbit meat, but when the fastest growing strain was cocultured with Pseudomonas fluorescens and Brochothrix thermosphacta isolates, maximum cell densities and growth rates were significantly (P < 0.01) lower. After irradiation (2.5 kGy) of pure cultures in sterile rabbit meat, surviving cells of both Psychrobacter strains decreased for a period of 5 to 7 days and then resumed multiplication that, at day 12, resulted in a similar increase (1.6 to 1.7 log CFU/g) over initial survivor numbers. When irradiated in combination with the spoilage bacteria, one of the strains required 12 days to reach initial numbers. In conclusion, Psychrobacter spp. are radioresistant nonsporeforming bacteria with a low relative incidence among the storage flora of rabbit meat, unable to compete with food spoilage bacteria in this ecosystem and apparently not a major contributor to the spoilage of rabbit meat after irradiation.


Plant Disease ◽  
2001 ◽  
Vol 85 (2) ◽  
pp. 195-201 ◽  
Author(s):  
E. C. Whiting ◽  
A. Khan ◽  
W. D. Gubler

Phaeomoniella chlamydospora, a species of Phaeomoniella, and two species of Phaeoacremonium, P. inflatipes and P. aleophilum, have been associated with young grapevine decline in major production regions of California. Phaeomoniella chlamydospora has been isolated from healthy vines and inoculated but non-symptomatic vines and rooted cuttings. Effects of temperature and water potential on fungal response in culture were investigated to find effective control strategies for nurseries. Mycelial growth rates at temperatures 5 to 37°C showed a quadratic response with optimum growth rates for Phaeomoniella chlamydospora and P. aleophilum at 25°C and at 30°C for P. inflatipes. Response to water potential varied by isolates within a species, but isolates of Phaeomoniella chlamydospora were not sensitive to decreasing water potential. A conidial suspension and plugs of agar with mycelia were placed in glass vials and incubated in hot water for 15 to 120 min. Conidia were sensitive to hot-water treatment after 15 and 30 min. Nevertheless, mycelia of P. inflatipes from agar plugs grew on potato dextrose agar at 22°C after 120 min incubation at 51°C. Because the fungi were not killed by incubation in glass vials at 51°C, methods other than hot-water treatment may be more effective in eliminating Phaeomoniella chlamydospora and Phaeoacremonium spp. from dormant vine cuttings.


Sign in / Sign up

Export Citation Format

Share Document