scholarly journals Isolation and Functional Analysis of a Gene, tcsB, Encoding a Transmembrane Hybrid-Type Histidine Kinase from Aspergillus nidulans

2002 ◽  
Vol 68 (11) ◽  
pp. 5304-5310 ◽  
Author(s):  
Kentaro Furukawa ◽  
Yasuaki Katsuno ◽  
Takeshi Urao ◽  
Tomio Yabe ◽  
Toshiko Yamada-Okabe ◽  
...  

ABSTRACT We cloned and characterized a novel Aspergillus nidulans histidine kinase gene, tcsB, encoding a membrane-type two-component signaling protein homologous to the yeast osmosensor synthetic lethal N-end rule protein 1 (SLN1), which transmits signals through the high-osmolarity glycerol response 1 (HOG1) mitogen-activated protein kinase (MAPK) cascade in yeast cells in response to environmental osmotic stimuli. From an A. nidulans cDNA library, we isolated a positive clone containing a 3,210-bp open reading frame that encoded a putative protein consisting of 1,070 amino acids. The predicted tcsB protein (TcsB) has two probable transmembrane regions in its N-terminal half and has a high degree of structural similarity to yeast Sln1p, a transmembrane hybrid-type histidine kinase. Overexpression of the tcsB cDNA suppressed the lethality of a temperature-sensitive osmosensing-defective sln1-ts yeast mutant. However, tcsB cDNAs in which the conserved phosphorylation site His552 residue or the phosphorelay site Asp989 residue had been replaced failed to complement the sln1-ts mutant. In addition, introduction of the tcsB cDNA into an sln1Δ sho1Δ yeast double mutant, which lacked two osmosensors, suppressed lethality in high-salinity media and activated the HOG1 MAPK. These results imply that TcsB functions as an osmosensor histidine kinase. We constructed an A. nidulans strain lacking the tcsB gene (tcsBΔ) and examined its phenotype. However, unexpectedly, the tcsBΔ strain did not exhibit a detectable phenotype for either hyphal development or morphology on standard or stress media. Our results suggest that A. nidulans has more complex and robust osmoregulatory systems than the yeast SLN1-HOG1 MAPK cascade.

1999 ◽  
Vol 19 (12) ◽  
pp. 8344-8352 ◽  
Author(s):  
Maiko Inagaki ◽  
Tobias Schmelzle ◽  
Kyoko Yamaguchi ◽  
Kenji Irie ◽  
Michael N. Hall ◽  
...  

ABSTRACT PDK1 (phosphoinositide-dependent kinase 1) is a mammalian growth factor-regulated serine/threonine kinase. Using a genetic selection based on a mutant form of the yeast MAP kinase kinase Ste7, we isolated a gene, PKH2, encoding a structurally and functionally conserved yeast homolog of PDK1. Yeast cells lacking bothPKH2 and PKH1, encoding another PDK1 homolog, were nonviable, indicating that Pkh1 and Pkh2 share an essential function. A temperature-sensitive mutant, pkh1D398Gpkh2, was phenotypically similar to mutants defective in the Pkc1–mitogen-activated protein kinase (MAPK) pathway. Genetic epistasis analyses, the phosphorylation of Pkc1 by Pkh2 in vitro, and reduced Pkc1 activity in the pkh1D398G pkh2mutant indicate that Pkh functions upstream of Pkc1. The Pkh2 phosphorylation site in Pkc1 (Thr-983) is part of a conserved PDK1 target motif and essential for Pkc1 function. Thus, the yeast PDK1 homologs activate Pkc1 and the Pkc1-effector MAPK pathway.


2001 ◽  
Vol 12 (1) ◽  
pp. 53-62 ◽  
Author(s):  
Matthew R. Alexander ◽  
Mike Tyers ◽  
Mireille Perret ◽  
B. Maureen Craig ◽  
Karen S. Fang ◽  
...  

Exposure of yeast cells to an increase in external osmolarity induces a temporary growth arrest. Recovery from this stress is mediated by the accumulation of intracellular glycerol and the transcription of several stress response genes. Increased external osmolarity causes a transient accumulation of 1N and 2N cells and a concomitant depletion of S phase cells. Hypertonic stress triggers a cell cycle delay in G2 phase cells that appears distinct from the morphogenesis checkpoint, which operates in early S phase cells. Hypertonic stress causes a decrease in CLB2 mRNA, phosphorylation of Cdc28p, and inhibition of Clb2p-Cdc28p kinase activity, whereas Clb2 protein levels are unaffected. Like the morphogenesis checkpoint, the osmotic stress-induced G2 delay is dependent upon the kinase Swe1p, but is not tightly correlated with inhibition of Clb2p-Cdc28p kinase activity. Thus, deletion ofSWE1 does not prevent the hypertonic stress-induced inhibition of Clb2p-Cdc28p kinase activity. Mutation of the Swe1p phosphorylation site on Cdc28p (Y19) does not fully eliminate the Swe1p-dependent cell cycle delay, suggesting that Swe1p may have functions independent of Cdc28p phosphorylation. Conversely, deletion of the mitogen-activated protein kinase HOG1 does prevent Clb2p-Cdc28p inhibition by hypertonic stress, but does not block Cdc28p phosphorylation or alleviate the cell cycle delay. However, Hog1p does contribute to proper nuclear segregation after hypertonic stress in cells that lack Swe1p. These results suggest a hypertonic stress-induced cell cycle delay in G2 phase that is mediated in a novel way by Swe1p in cooperation with Hog1p.


1997 ◽  
Vol 17 (6) ◽  
pp. 3429-3439 ◽  
Author(s):  
T Chen ◽  
J Kurjan

SST2 plays an important role in the sensitivity of yeast cells to pheromone and in recovery from pheromone-induced G1 arrest. Recently, a family of Sst2p homologs that act as GTPase-activating proteins (GAPs) for G alpha subunits has been identified. We have identified an interaction between Sst2p and the previously identified Mpt5p by using the two-hybrid system. Loss of Mpt5p function resulted in a temperature-sensitive growth phenotype, an increase in pheromone sensitivity, and a defect in recovery from pheromone-induced G1 arrest, although the effects on pheromone response and recovery were mild in comparison to those of sst2 mutants. Overexpression of either Sst2p or Mpt5p promoted recovery from G1 arrest. Promotion of recovery by overexpression of Mpt5p required Sst2p, but the effect of overexpression of Sst2p was only partially dependent on Mpt5p. Mpt5p was also found to interact with the mitogen-activated protein kinase homologs Fus3p and Kss1p, and an mpt5 mutation was able to suppress the pheromone arrest and mating defects of a fus3 mutant. Because either mpt5 or cln3 mutations suppressed the fus3 phenotypes, interactions of Mpt5p with the G1 cyclins and Cdc28p were tested. An interaction between Mpt5p and Cdc28p was detected. We discuss these results with respect to a model in which Sst2p plays a role in pheromone sensitivity and recovery that acts through Mpt5p in addition to a role as a G alpha GAP suggested by the analysis of the Sst2p homologs.


1993 ◽  
Vol 120 (1) ◽  
pp. 153-162 ◽  
Author(s):  
M J O'Connell ◽  
P B Meluh ◽  
M D Rose ◽  
N R Morris

To investigate the relationship between structure and function of kinesin-like proteins, we have identified by polymerase chain reaction (PCR) a new kinesin-like protein in the filamentous fungus Aspergillus nidulans, which we have designated KLPA. DNA sequence analysis showed that the predicted KLPA protein contains a COOH terminal kinesin-like motor domain. Despite the structural similarity of KLPA to the KAR3 and NCD kinesin-like proteins of Saccharomyces cerevisiae and Drosophila melanogaster, which also posses COOH-terminal kinesin-like motor domains, there are no significant sequence similarities between the nonmotor or tail portions of these proteins. Nevertheless, expression studies in S. cerevisiae showed that klpA can complement a null mutation in KAR3, indicating that primary amino acid sequence conservation between the tail domains of kinesin-like proteins is not necessarily required for conserved function. Chromosomal deletion of the klpA gene exerted no observable mutant phenotype, suggesting that in A. nidulans there are likely to be other proteins functionally redundant with KLPA. Interestingly, the temperature sensitive phenotype of a mutation in another gene, bimC, which encodes a kinesin-like protein involved in mitotic spindle function in A. nidulans, was suppressed by deletion of klpA. We hypothesize that the loss of KLPA function redresses unbalanced forces within the spindle caused by mutation in bimC, and that the KLPA and BIMC kinesin-like proteins may play opposing roles in spindle function.


1996 ◽  
Vol 16 (6) ◽  
pp. 2585-2593 ◽  
Author(s):  
M E Nickas ◽  
M P Yaffe

Yeast cells with mutations in BRO1 display phenotypes similar to those caused by deletion of BCK1, a gene encoding a MEK kinase that functions in a mitogen-activated protein kinase pathway mediating maintenance of cell integrity. bro1 cells exhibit a temperature-sensitive growth defect that is suppressed by the addition of osmotic stabilizers or Ca2+ to the growth medium or by additional copies of the BCK1 gene. At permissive temperatures, bro1 mutants are sensitive to caffeine and respond abnormally to nutrient limitation. A null mutation in BRO1 is synthetically lethal with null mutations in BCK1, MPK1, which encodes a mitogen-activated protein kinase that functions downstream of Bck1p, or PKC1, a gene encoding a protein kinase C homolog that activates Bck1p. Analysis of the isolated BRO1 gene revealed that it encodes a novel, 97-kDa polypeptide which contains a putative SH3 domain-binding motif and is homologous to a protein of unknown function in Caenorhabditis elegans.


2007 ◽  
Vol 18 (6) ◽  
pp. 2123-2136 ◽  
Author(s):  
Carol A. Jones ◽  
Suzanne E. Greer-Phillips ◽  
Katherine A. Borkovich

Two-component systems, consisting of proteins with histidine kinase and/or response regulator domains, regulate environmental responses in bacteria, Archaea, fungi, slime molds, and plants. Here, we characterize RRG-1, a response regulator protein from the filamentous fungus Neurospora crassa. The cell lysis phenotype of Δrrg-1 mutants is reminiscent of osmotic-sensitive (os) mutants, including nik-1/os-1 (a histidine kinase) and strains defective in components of a mitogen-activated protein kinase (MAPK) pathway: os-4 (MAPK kinase kinase), os-5 (MAPK kinase), and os-2 (MAPK). Similar to os mutants, Δrrg-1 strains are sensitive to hyperosmotic conditions, and they are resistant to the fungicides fludioxonil and iprodione. Like os-5, os-4, and os-2 mutants, but in contrast to nik-1/os-1 strains, Δrrg-1 mutants do not produce female reproductive structures (protoperithecia) when nitrogen starved. OS-2-phosphate levels are elevated in wild-type cells exposed to NaCl or fludioxonil, but they are nearly undetectable in Δrrg-1 strains. OS-2-phosphate levels are also low in Δrrg-1, os-2, and os-4 mutants under nitrogen starvation. Analysis of the rrg-1D921Nallele, mutated in the predicted phosphorylation site, provides support for phosphorylation-dependent and -independent functions for RRG-1. The data indicate that RRG-1 controls vegetative cell integrity, hyperosmotic sensitivity, fungicide resistance, and protoperithecial development through regulation of the OS-4/OS-5/OS-2 MAPK pathway.


2008 ◽  
Vol 75 (1) ◽  
pp. 127-134 ◽  
Author(s):  
Anita Dongo ◽  
Nelly Bataill�-Simoneau ◽  
Claire Campion ◽  
Thomas Guillemette ◽  
Bruno Hamon ◽  
...  

ABSTRACT We have shown that the plant pathogen Alternaria brassicicola exhibited very high susceptibility to ambruticin VS4 and to a lesser extent to the phenylpyrrole fungicide fludioxonil. These compounds are both derived from natural bacterial metabolites with antifungal properties and are thought to exert their toxicity by interfering with osmoregulation in filamentous fungi. Disruption of the osmosensor group III histidine kinase gene AbNIK1 (for A. brassicola NIK1) resulted in high levels of resistance to ambruticin and fludioxonil, while a mutant isolate characterized by a single-amino-acid substitution in the HAMP domain of the kinase only exhibited moderate resistance. Moreover, the natural resistance of Saccharomyces cerevisiae to these antifungal molecules switched to sensitivity in strains expressing AbNIK1p. We also showed that exposure to fludioxonil and ambruticin resulted in abnormal phosphorylation of a Hog1-like mitogen-activated protein kinase (MAPK) in A. brassicicola. Parallel experiments carried out with wild-type and mutant isolates of Neurospora crassa revealed that, in this species, ambruticin susceptibility was dependent on the OS1-RRG1 branch of the phosphorelay pathway downstream of the OS2 MAPK cascade but independent of the yeast Skn7-like response regulator RRG2. These results show that the ability to synthesize a functional group III histidine kinase is a prerequisite for the expression of ambruticin and phenylpyrrole susceptibility in A. brassicicola and N. crassa and that, at least in the latter species, improper activation of the high-osmolarity glycerol-related pathway could explain their fungicidal properties.


Genetics ◽  
2000 ◽  
Vol 156 (1) ◽  
pp. 21-29 ◽  
Author(s):  
David R H Evans ◽  
Brian A Hemmings

Abstract PP2A is a central regulator of eukaryotic signal transduction. The human catalytic subunit PP2Acα functionally replaces the endogenous yeast enzyme, Pph22p, indicating a conservation of function in vivo. Therefore, yeast cells were employed to explore the role of invariant PP2Ac residues. The PP2Acα Y127N substitution abolished essential PP2Ac function in vivo and impaired catalysis severely in vitro, consistent with the prediction from structural studies that Tyr-127 mediates substrate binding and its side chain interacts with the key active site residues His-118 and Asp-88. The V159E substitution similarly impaired PP2Acα catalysis profoundly and may cause global disruption of the active site. Two conditional mutations in the yeast Pph22p protein, F232S and P240H, were found to cause temperature-sensitive impairment of PP2Ac catalytic function in vitro. Thus, the mitotic and cell lysis defects conferred by these mutations result from a loss of PP2Ac enzyme activity. Substitution of the PP2Acα C-terminal Tyr-307 residue by phenylalanine impaired protein function, whereas the Y307D and T304D substitutions abolished essential function in vivo. Nevertheless, Y307D did not reduce PP2Acα catalytic activity significantly in vitro, consistent with an important role for the C terminus in mediating essential protein-protein interactions. Our results identify key residues important for PP2Ac function and characterize new reagents for the study of PP2A in vivo.


Genetics ◽  
1996 ◽  
Vol 142 (4) ◽  
pp. 1083-1093 ◽  
Author(s):  
Carlos C Evangelista ◽  
Ana M Rodriguez Torres ◽  
M Paullin Limbach ◽  
Richard S Zitomer

Abstract Yeast respond to a variety of stresses through a global stress response that is mediated by a number of signal transduction pathways and the cis-acting STRE DNA sequence. The CYC7 gene, encoding iso-2-cytochrome c, has been demonstrated to respond to heat shock, glucose starvation, approach-to-stationary phase, and, as we demonstrate here, to osmotic stress. This response was delayed in a the hogl-Δ1 strain implicating the Hog1 mitogen-activated protein kinase cascade, a known component of the global stress response. Deletion analysis of the CYC7 regulatory region suggested that three STRE elements were each capable of inducing the stress response. Mutations in the ROX3 gene prevented CYC7 RNA accumulation during heat shock and osmotic stress. ROX3 RNA levels were shown to be induced by stress through a novel regulatory element. A selection for high-copy suppressors of a ROX3 temperature-sensitive allele resulted in the isolation of RTS1, encoding a protein with homology to the B′ regulatory subunit of protein phosphatase 2A0. Deletion of RTS1 caused temperature and osmotic sensitivity and increased accumulation of CYC7 RNA under all conditions. Over-expression of this gene caused increased CYC7 RNA accumulation in rox3 mutants but not in wild-type cells.


Genetics ◽  
1995 ◽  
Vol 141 (4) ◽  
pp. 1275-1285 ◽  
Author(s):  
K N Huang ◽  
L S Symington

Abstract The PKC1 gene product, protein kinase C, regulates a mitogen-activated protein kinase (MAPK) cascade, which is implicated in cell wall metabolism. Previously, we identified the pkc1-4 allele in a screen for mutants with increased rates of recombination, indicating that PKC1 may also regulate DNA metabolism. The pkc1-4 allele also conferred a temperature-sensitive (ts) growth defect. Extragenic suppressors were isolated that suppress both the ts and hyperrecombination phenotypes conferred by the pkc1-4 mutation. Eight of these suppressors for into two complementation groups, designated KCS1 and KCS2. KCS1 was cloned and found to encode a novel protein with homology to the basic leucine zipper family of transcription factors. KCS2 is allelic with PTC1, a previously identified type 2C serine/threonine protein phosphatase. Although mutation of either KCS1 or PTC1 causes little apparent phenotype, the kcs1 delta ptc1 delta double mutant fails to grow at 30 degrees. Furthermore, the ptc1 deletion mutation is synthetically lethal in combination with a mutation in MPK1, which encodes a MAPK homologue proposed to act in the PKC1 pathway. Because PTC1 was initially isolated as a component of the Hog1p MAPK pathway, it appears that these two MAPK cascades share a common regulatory feature.


Sign in / Sign up

Export Citation Format

Share Document