scholarly journals Construction of DNA-Shuffled and Incrementally Truncated Libraries by a Mutagenic and Unidirectional Reassembly Method: Changing from a Substrate Specificity of Phospholipase to That of Lipase

2002 ◽  
Vol 68 (12) ◽  
pp. 6146-6151 ◽  
Author(s):  
Jae Kwang Song ◽  
Bora Chung ◽  
Young Hak Oh ◽  
Joon Shick Rhee

ABSTRACT A method of mutagenic and unidirectional reassembly (MURA) that can generate libraries of DNA-shuffled and randomly truncated proteins was developed. The method involved fragmenting the template gene(s) randomly by DNase I and reassembling the small fragments with a unidirectional primer by PCR. The MURA products were treated with T4 DNA polymerase and subsequently with a restriction enzyme whose site was located on the region of the MURA primer. The N-terminal-truncated and DNA-shuffled library of a Serratia sp. phospholipase A1 prepared by this method had an essentially random variation of truncated size and also showed point mutations associated with DNA shuffling. After high-throughput screening on triglyceride-emulsified plates, several mutants exhibiting absolute lipase activity (NPL variants) were obtained. The sequence analysis and the lipase activity assay on the NPL variants revealed that N-terminal truncations at a region beginning with amino acids 61 to 71, together with amino acid substitutions, resulted in the change of substrate specificity from a phospholipase to a lipase. We therefore suggest that the MURA method, which combines incremental truncation with DNA shuffling, can contribute to expanding the searchable sequence space in directed evolution experiments.

1986 ◽  
Vol 6 (10) ◽  
pp. 3470-3480 ◽  
Author(s):  
E Moran ◽  
B Zerler ◽  
T M Harrison ◽  
M B Mathews

The transformation and early adenovirus gene transactivation functions of the E1A region were analyzed with deletion and point mutations. Deletion of amino acids from position 86 through 120 had little effect on the lytic or transforming functions of the E1A products, while deletion of amino acids from position 121 through 150 significantly impaired both functions. The sensitivity of the transformation function to alterations in the region from amino acid position 121 to 150 was further indicated by the impairment of transforming activity resulting from single amino acid substitutions at positions 124 and 135. Interestingly, conversion of a cysteine residue at position 124 to glycine severely impaired the transformation function without affecting the early adenovirus gene activating functions. Single amino acid substitutions in a different region of the E1A gene had the converse effect. All the mutants produced polypeptides of sufficient stability to be detected by Western immunoblot analysis. The single amino acid substitutions at positions 124 and 135, although impairing the transformation functions, did not detectably alter the formation of the higher-apparent-molecular-weight forms of the E1A products.


Author(s):  
Céline Contesto-Richefeu ◽  
Nicolas Tarbouriech ◽  
Xavier Brazzolotto ◽  
Wim P. Burmeister ◽  
Christophe N. Peyrefitte ◽  
...  

TheVaccinia viruspolymerase holoenzyme is composed of three subunits: E9, the catalytic DNA polymerase subunit; D4, a uracil-DNA glycosylase; and A20, a protein with no known enzymatic activity. The D4/A20 heterodimer is the DNA polymerase cofactor, the function of which is essential for processive DNA synthesis. The recent crystal structure of D4 bound to the first 50 amino acids of A20 (D4/A201–50) revealed the importance of three residues, forming a cation–π interaction at the dimerization interface, for complex formation. These are Arg167 and Pro173 of D4 and Trp43 of A20. Here, the crystal structures of the three mutants D4-R167A/A201–50, D4-P173G/A201–50and D4/A201–50-W43A are presented. The D4/A20 interface of the three structures has been analysed for atomic solvation parameters and cation–π interactions. This study confirms previous biochemical data and also points out the importance for stability of the restrained conformational space of Pro173. Moreover, these new structures will be useful for the design and rational improvement of known molecules targeting the D4/A20 interface.


1986 ◽  
Vol 6 (10) ◽  
pp. 3470-3480
Author(s):  
E Moran ◽  
B Zerler ◽  
T M Harrison ◽  
M B Mathews

The transformation and early adenovirus gene transactivation functions of the E1A region were analyzed with deletion and point mutations. Deletion of amino acids from position 86 through 120 had little effect on the lytic or transforming functions of the E1A products, while deletion of amino acids from position 121 through 150 significantly impaired both functions. The sensitivity of the transformation function to alterations in the region from amino acid position 121 to 150 was further indicated by the impairment of transforming activity resulting from single amino acid substitutions at positions 124 and 135. Interestingly, conversion of a cysteine residue at position 124 to glycine severely impaired the transformation function without affecting the early adenovirus gene activating functions. Single amino acid substitutions in a different region of the E1A gene had the converse effect. All the mutants produced polypeptides of sufficient stability to be detected by Western immunoblot analysis. The single amino acid substitutions at positions 124 and 135, although impairing the transformation functions, did not detectably alter the formation of the higher-apparent-molecular-weight forms of the E1A products.


1998 ◽  
Vol 42 (10) ◽  
pp. 2576-2583 ◽  
Author(s):  
Christian Therrien ◽  
Francois Sanschagrin ◽  
Timothy Palzkill ◽  
Roger C. Levesque

ABSTRACT The PSE-4 enzyme is a prototype carbenicillin-hydrolyzing enzyme exhibiting high activity against penicillins and early cephalosporins. To understand the mechanism that modulates substrate profiles and to verify the ability of PSE-4 to extend its substrate specificity toward expanded-spectrum cephalosporins, we used random replacement mutagenesis to generate six random libraries from amino acids 162 to 179 in the Ω loop. This region is known from studies with TEM-1 to be implicated in substrate specificity. It was found that the mechanism modulating ceftazidime hydrolysis in PSE-4 was different from that in TEM-1. The specificity of class 2c carbenicillin-hydrolyzing enzymes could not be assigned to the Ω loop of PSE-4. Analysis of the percentage of functional enzymes revealed that the hydrolysis of ampicillin was more affected than hydrolysis of carbenicillin by amino acid substitutions at positions 162 to 164 and 165 to 167.


2000 ◽  
Vol 20 (12) ◽  
pp. 4381-4392 ◽  
Author(s):  
Cynthia Evans Trueblood ◽  
Victor L. Boyartchuk ◽  
Elizabeth A. Picologlou ◽  
David Rozema ◽  
C. Dale Poulter ◽  
...  

ABSTRACT Many proteins that contain a carboxyl-terminal CaaX sequence motif, including Ras and yeast a-factor, undergo a series of sequential posttranslational processing steps. Following the initial prenylation of the cysteine, the three C-terminal amino acids are proteolytically removed, and the newly formed prenylcysteine is carboxymethylated. The specific amino acids that comprise the CaaX sequence influence whether the protein can be prenylated and proteolyzed. In this study, we evaluated processing of a-factor variants with all possible single amino acid substitutions at either the a1, the a2, or the X position of the a-factor Ca1a2X sequence, CVIA. The substrate specificity of the two known yeast CaaX proteases, Afc1p and Rce1p, was investigated in vivo. Both Afc1p and Rce1p were able to proteolyze a-factor with A, V, L, I, C, or M at the a1 position, V, L, I, C, or M at the a2 position, or any amino acid at the X position that was acceptable for prenylation of the cysteine. Eight additional a-factor variants with a1 substitutions were proteolyzed by Rce1p but not by Afc1p. In contrast, Afc1p was able to proteolyze additional a-factor variants that Rce1p may not be able to proteolyze. In vitro assays indicated that farnesylation was compromised or undetectable for 11 a-factor variants that produced no detectable halo in the wild-type AFC1 RCE1 strain. The isolation of mutations in RCE1 that improved proteolysis of a-factor-CAMQ, indicated that amino acid substitutions E139K, F189L, and Q201R in Rce1p affected its substrate specificity.


Pathogens ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 669
Author(s):  
Dina A. Abdulrahman ◽  
Xiaorong Meng ◽  
Michael Veit

Recent pandemics of zoonotic origin were caused by members of coronavirus (CoV) and influenza A (Flu A) viruses. Their glycoproteins (S in CoV, HA in Flu A) and ion channels (E in CoV, M2 in Flu A) are S-acylated. We show that viruses of all genera and from all hosts contain clusters of acylated cysteines in HA, S and E, consistent with the essential function of the modification. In contrast, some Flu viruses lost the acylated cysteine in M2 during evolution, suggesting that it does not affect viral fitness. Members of the DHHC family catalyze palmitoylation. Twenty-three DHHCs exist in humans, but the number varies between vertebrates. SARS-CoV-2 and Flu A proteins are acylated by an overlapping set of DHHCs in human cells. We show that these DHHC genes also exist in other virus hosts. Localization of amino acid substitutions in the 3D structure of DHHCs provided no evidence that their activity or substrate specificity is disturbed. We speculate that newly emerged CoVs or Flu viruses also depend on S-acylation for replication and will use the human DHHCs for that purpose. This feature makes these DHHCs attractive targets for pan-antiviral drugs.


2000 ◽  
Vol 44 (8) ◽  
pp. 2207-2210 ◽  
Author(s):  
Nadia Maggi Solcà ◽  
Marco Valerio Bernasconi ◽  
Jean-Claude Piffaretti

ABSTRACT The rdxA gene of 30 independently isolatedHelicobacter pylori strains was sequenced. A comparison of the rdxA sequences revealed a higher percentage of amino acid substitutions in the corresponding protein than in other housekeeping genes. Out of 122 point mutations, 41 were missense and 4 were nonsense. A resistant strain with a nucleotide insertion in therdxA sequence was also found. With the exception of the point mutations and the insertion generating a stop signal, no particular nucleotide mutation or amino acid substitution could be associated to metronidazole resistance. Moreover, phylogenetic analysis of the 30 nucleotide sequences did not demonstrate specific clusters associated with the resistance phenotype.


Sign in / Sign up

Export Citation Format

Share Document