scholarly journals Identification of separate domains in the adenovirus E1A gene for immortalization activity and the activation of virus early genes.

1986 ◽  
Vol 6 (10) ◽  
pp. 3470-3480 ◽  
Author(s):  
E Moran ◽  
B Zerler ◽  
T M Harrison ◽  
M B Mathews

The transformation and early adenovirus gene transactivation functions of the E1A region were analyzed with deletion and point mutations. Deletion of amino acids from position 86 through 120 had little effect on the lytic or transforming functions of the E1A products, while deletion of amino acids from position 121 through 150 significantly impaired both functions. The sensitivity of the transformation function to alterations in the region from amino acid position 121 to 150 was further indicated by the impairment of transforming activity resulting from single amino acid substitutions at positions 124 and 135. Interestingly, conversion of a cysteine residue at position 124 to glycine severely impaired the transformation function without affecting the early adenovirus gene activating functions. Single amino acid substitutions in a different region of the E1A gene had the converse effect. All the mutants produced polypeptides of sufficient stability to be detected by Western immunoblot analysis. The single amino acid substitutions at positions 124 and 135, although impairing the transformation functions, did not detectably alter the formation of the higher-apparent-molecular-weight forms of the E1A products.

1986 ◽  
Vol 6 (10) ◽  
pp. 3470-3480
Author(s):  
E Moran ◽  
B Zerler ◽  
T M Harrison ◽  
M B Mathews

The transformation and early adenovirus gene transactivation functions of the E1A region were analyzed with deletion and point mutations. Deletion of amino acids from position 86 through 120 had little effect on the lytic or transforming functions of the E1A products, while deletion of amino acids from position 121 through 150 significantly impaired both functions. The sensitivity of the transformation function to alterations in the region from amino acid position 121 to 150 was further indicated by the impairment of transforming activity resulting from single amino acid substitutions at positions 124 and 135. Interestingly, conversion of a cysteine residue at position 124 to glycine severely impaired the transformation function without affecting the early adenovirus gene activating functions. Single amino acid substitutions in a different region of the E1A gene had the converse effect. All the mutants produced polypeptides of sufficient stability to be detected by Western immunoblot analysis. The single amino acid substitutions at positions 124 and 135, although impairing the transformation functions, did not detectably alter the formation of the higher-apparent-molecular-weight forms of the E1A products.


2018 ◽  
Author(s):  
Björn F. Koel ◽  
David F. Burke ◽  
Stefan van der Vliet ◽  
Theo M. Bestebroer ◽  
Guus F. Rimmelzwaan ◽  
...  

AbstractWe previously showed that single amino acid substitutions at seven positions in hemagglutinin determined major antigenic change of influenza H3N2 virus. Here, the impact of two such substitutions was tested in eleven representative H3 hemagglutinins to investigate context-dependence effects. The antigenic effect of substitutions introduced at hemagglutinin position 145 was fully independent of the amino acid context of the representative hemagglutinins. Antigenic change caused by substitutions introduced at hemagglutinin position 155 was variable and context-dependent. Our results suggest that epistatic interactions with contextual amino acids in the hemagglutinin can moderate the magnitude of antigenic change.


2004 ◽  
Vol 186 (4) ◽  
pp. 1078-1083 ◽  
Author(s):  
Amrita Kumar ◽  
James A. Brannigan ◽  
Charles P. Moran

ABSTRACT At the onset of endospore formation in Bacillus subtilis, the DNA binding protein Spo0A activates transcription from two types of promoters. The first type includes the spoIIG and spoIIE promoters, which are used by σA-RNA polymerase, whereas the second type includes the spoIIA promoter, which is used by RNA polymerase containing the secondary sigma factor σH. Previous genetic analyses have identified specific amino acids in α-helix E of Spo0A that are important for activation of Spo0A-dependent, σA-dependent promoters. However, these amino acids are not required for activation of the σH-dependent spoIIA promoter. We now report the effects of additional single-amino-acid substitutions and the effects of deletions in α-helix E. The effects of alanine substitutions revealed one new position (239) in Spo0A that appears to be specifically required for activation of the σA-dependent promoters. Based on the effects of a deletion mutation, we suggest that α-helix E in Spo0A is not directly involved in interaction with σH-RNA polymerase.


1995 ◽  
Vol 41 (9) ◽  
pp. 1288-1291 ◽  
Author(s):  
R P Waits ◽  
T Yamada ◽  
T Uemichi ◽  
M D Benson

Abstract Retinol-binding protein (RBP), the principal carrier for vitamin A, is known to form a complex with transthyretin (TTR) for transport in plasma. Individuals from a kindred with the amino acid substitution of serine for isoleucine at position 84 (Ser84) of the TTR molecule show substantial reduction in plasma concentrations of RBP. In the present study, we measured plasma RBP in individuals from several kindreds, demonstrating 17 different point mutations within the TTR gene. In each case, these mutations caused single amino acid substitutions at various positions throughout the TTR molecule. Of all the individuals examined, only those with mutations causing amino acid substitutions at position 84 of the TTR molecule (Ser84 and Asn84) demonstrated substantial decreases in plasma concentrations of RBP. These results suggest that the isoleucine at position 84 on the TTR molecule may be critically involved in mediating RBP binding. Further, these findings demonstrate the importance of considering TTR gene mutations when clinically evaluating patients with low RBP.


2000 ◽  
Vol 20 (12) ◽  
pp. 4381-4392 ◽  
Author(s):  
Cynthia Evans Trueblood ◽  
Victor L. Boyartchuk ◽  
Elizabeth A. Picologlou ◽  
David Rozema ◽  
C. Dale Poulter ◽  
...  

ABSTRACT Many proteins that contain a carboxyl-terminal CaaX sequence motif, including Ras and yeast a-factor, undergo a series of sequential posttranslational processing steps. Following the initial prenylation of the cysteine, the three C-terminal amino acids are proteolytically removed, and the newly formed prenylcysteine is carboxymethylated. The specific amino acids that comprise the CaaX sequence influence whether the protein can be prenylated and proteolyzed. In this study, we evaluated processing of a-factor variants with all possible single amino acid substitutions at either the a1, the a2, or the X position of the a-factor Ca1a2X sequence, CVIA. The substrate specificity of the two known yeast CaaX proteases, Afc1p and Rce1p, was investigated in vivo. Both Afc1p and Rce1p were able to proteolyze a-factor with A, V, L, I, C, or M at the a1 position, V, L, I, C, or M at the a2 position, or any amino acid at the X position that was acceptable for prenylation of the cysteine. Eight additional a-factor variants with a1 substitutions were proteolyzed by Rce1p but not by Afc1p. In contrast, Afc1p was able to proteolyze additional a-factor variants that Rce1p may not be able to proteolyze. In vitro assays indicated that farnesylation was compromised or undetectable for 11 a-factor variants that produced no detectable halo in the wild-type AFC1 RCE1 strain. The isolation of mutations in RCE1 that improved proteolysis of a-factor-CAMQ, indicated that amino acid substitutions E139K, F189L, and Q201R in Rce1p affected its substrate specificity.


2017 ◽  
Vol 61 (7) ◽  
Author(s):  
Tsuyoshi Yamada ◽  
Mari Maeda ◽  
Mohamed Mahdi Alshahni ◽  
Reiko Tanaka ◽  
Takashi Yaguchi ◽  
...  

ABSTRACT Terbinafine is one of the allylamine antifungal agents whose target is squalene epoxidase (SQLE). This agent has been extensively used in the therapy of dermatophyte infections. The incidence of patients with tinea pedis or unguium tolerant to terbinafine treatment prompted us to screen the terbinafine resistance of all Trichophyton clinical isolates from the laboratory of the Centre Hospitalier Universitaire Vaudois collected over a 3-year period and to identify their mechanism of resistance. Among 2,056 tested isolates, 17 (≈1%) showed reduced terbinafine susceptibility, and all of these were found to harbor SQLE gene alleles with different single point mutations, leading to single amino acid substitutions at one of four positions (Leu393, Phe397, Phe415, and His440) of the SQLE protein. Point mutations leading to the corresponding amino acid substitutions were introduced into the endogenous SQLE gene of a terbinafine-sensitive Arthroderma vanbreuseghemii (formerly Trichophyton mentagrophytes) strain. All of the generated A. vanbreuseghemii transformants expressing mutated SQLE proteins exhibited obvious terbinafine-resistant phenotypes compared to the phenotypes of the parent strain and of transformants expressing wild-type SQLE proteins. Nearly identical phenotypes were also observed in A. vanbreuseghemii transformants expressing mutant forms of Trichophyton rubrum SQLE proteins. Considering that the genome size of dermatophytes is about 22 Mb, the frequency of terbinafine-resistant clinical isolates was strikingly high. Increased exposure to antifungal drugs could favor the generation of resistant strains.


1998 ◽  
Vol 180 (18) ◽  
pp. 4865-4871 ◽  
Author(s):  
Alissa D. Jourdan ◽  
George V. Stauffer

ABSTRACT The GcvA protein is required for both glycine-mediated activation and purine-mediated repression of the gcvTHP operon. Random and site-directed PCR mutagenesis was used to create nucleotide changes in gcvA to identify residues of the protein involved in activation, repression, and DNA binding. Single amino acid substitutions at L30 and F31 cause a defect in activation of agcvT-lacZ fusion but have no effect on repression or DNA binding. Single amino acid substitutions at V32 and S38 cause the loss of binding of GcvA to DNA. A deletion of the carboxy-terminal 14 amino acids of GcvA results in the loss of purine-mediated repression and, consequently, a constitutive activation of a gcvT-lacZfusion. The results of this study partially define regions of GcvA involved in activation, repression, and DNA binding and demonstrate that these functions of GcvA are genetically separable.


2003 ◽  
Vol 47 (12) ◽  
pp. 3890-3900 ◽  
Author(s):  
Regina Leber ◽  
Sandra Fuchsbichler ◽  
Vlasta Klobučníková ◽  
Natascha Schweighofer ◽  
Eva Pitters ◽  
...  

ABSTRACT Ten mutants of the yeast Saccharomyces cerevisiae resistant to the antimycotic terbinafine were isolated after chemical or UV mutagenesis. Molecular analysis of these mutants revealed single base pair exchanges in the ERG1 gene coding for squalene epoxidase, the target of terbinafine. The mutants did not show cross-resistance to any of the substrates of various pleiotropic drug resistance efflux pumps tested. The ERG1 mRNA levels in the mutants did not differ from those in the wild-type parent strains. Terbinafine resistance was transmitted with the mutated alleles in gene replacement experiments, proving that single amino acid substitutions in the Erg1 protein were sufficient to confer the resistance phenotype. The amino acid changes caused by the point mutations were clustered in two regions of the Erg1 protein. Seven mutants carried the amino acid substitutions F402L (one mutant), F420L (one mutant), and P430S (five mutants) in the C-terminal part of the protein; and three mutants carried an L251F exchange in the central part of the protein. Interestingly, all exchanges identified involved amino acids which are conserved in the squalene epoxidases of yeasts and mammals. Two mutations that were generated by PCR mutagenesis of the ERG1 gene and that conferred terbinafine resistance mapped in the same regions of the Erg1 protein, with one resulting in an L251F exchange and the other resulting in an F433S exchange. The results strongly indicate that these regions are responsible for the interaction of yeast squalene epoxidase with terbinafine.


2018 ◽  
Author(s):  
Nidhi Gour ◽  
Bharti Koshti ◽  
Chandra Kanth P. ◽  
Dhruvi Shah ◽  
Vivek Shinh Kshatriya ◽  
...  

We report for the very first time self-assembly of Cysteine and Methionine to discrenible strucutres under neutral condition. To get insights into the structure formation, thioflavin T and Congo red binding assays were done which revealed that aggregates may not have amyloid like characteristics. The nature of interactions which lead to such self-assemblies was purported by coincubating assemblies in urea and mercaptoethanol. Further interaction of aggregates with short amyloidogenic dipeptide diphenylalanine (FF) was assessed. While cysteine aggregates completely disrupted FF fibres, methionine albeit triggered fibrillation. The cytotoxicity assays of cysteine and methionine structures were performed on Human Neuroblastoma IMR-32 cells which suggested that aggregates are not cytotoxic in nature and thus, may not have amyloid like etiology. The results presented in the manuscript are striking, since to the best of our knowledge,this is the first report which demonstrates that even non-aromatic amino acids (cysteine and methionine) can undergo spontaneous self-assembly to form ordered aggregates.


Sign in / Sign up

Export Citation Format

Share Document