scholarly journals Diffusional Properties of Methanogenic Granular Sludge: 1H NMR Characterization

2003 ◽  
Vol 69 (11) ◽  
pp. 6644-6649 ◽  
Author(s):  
Piet N. L. Lens ◽  
Rakel Gastesi ◽  
Frank Vergeldt ◽  
Adriaan C. van Aelst ◽  
Antonio G. Pisabarro ◽  
...  

ABSTRACT The diffusive properties of anaerobic methanogenic and sulfidogenic aggregates present in wastewater treatment bioreactors were studied using diffusion analysis by relaxation time-separated pulsed-field gradient nuclear magnetic resonance (NMR) spectroscopy and NMR imaging. NMR spectroscopy measurements were performed at 22°C with 10 ml of granular sludge at a magnetic field strength of 0.5 T (20 MHz resonance frequency for protons). Self-diffusion coefficients of H2O in the investigated series of mesophilic aggregates were found to be 51 to 78% lower than the self-diffusion coefficient of free water. Interestingly, self-diffusion coefficients of H2O were independent of the aggregate size for the size fractions investigated. Diffusional transport occurred faster in aggregates growing under nutrient-rich conditions (e.g., the bottom of a reactor) or at high (55°C) temperatures than in aggregates cultivated in nutrient-poor conditions or at low (10°C) temperatures. Exposure of aggregates to 2.5% glutaraldehyde or heat (70 or 90°C for 30 min) modified the diffusional transport up to 20%. In contrast, deactivation of aggregates by HgCl2 did not affect the H2O self-diffusion coefficient in aggregates. Analysis of NMR images of a single aggregate shows that methanogenic aggregates possess a spin-spin relaxation time and self-diffusion coefficient distribution, which are due to both physical (porosity) and chemical (metal sulfide precipitates) factors.

1999 ◽  
Vol 39 (7) ◽  
pp. 187-194 ◽  
Author(s):  
P. Lens ◽  
F. Vergeldt ◽  
G. Lettinga ◽  
H. Van As

The diffusive properties of mesophilic methanogenic granular sludge have been studied using diffusion analysis by relaxation time separated pulsed field gradient nuclear magnetic resonance (DARTS PFG NMR) spectroscopy. NMR measurements were performed at 22°C with 10 ml granular sludge at a magnetic field strength of 0.5 T (20 MHz resonance frequency for protons). Spin-spin relaxation (T2) time measurements indicate that three 1H populations can be distinguished in methanogenic granular sludge beds, corresponding to water in three different environments. The T2 relaxation time measurements clearly differentiate the extragranular water (T2 ≈ 1000 ms) from the water present in the granular matrix (T2 = 40-100 ms) and bacterial cell associated water (T2 = 10-15 ms). Self-diffusion coefficient measurements at 22°C of the different 1H-water populations as the tracer show that methanogenic granular sludge does not contain one unique diffusion coefficient. The observed distribution of self-diffusion coefficients varies between 1.1 × 10−9 m2/s (bacterial cell associated water) and 2.1 × 10−9 m2/s (matrix associated water).


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 4030
Author(s):  
Gengbiao Chen ◽  
Zhiwen Liu

The diffusion behavior of fluid water in nanochannels with hydroxylation of silica gel and silanization of different modified chain lengths was simulated by the equilibrium molecular dynamics method. The diffusion coefficient of fluid water was calculated by the Einstein method and the Green–Kubo method, so as to analyze the change rule between the modification degree of nanochannels and the diffusion coefficient of fluid water. The results showed that the diffusion coefficient of fluid water increased with the length of the modified chain. The average diffusion coefficient of fluid water in the hydroxylated nanochannels was 8.01% of the bulk water diffusion coefficient, and the diffusion coefficients of fluid water in the –(CH2)3CH3, –(CH2)7CH3, and –(CH2)11CH3 nanochannels were 44.10%, 49.72%, and 53.80% of the diffusion coefficients of bulk water, respectively. In the above four wall characteristic models, the diffusion coefficients in the z direction were smaller than those in the other directions. However, with an increase in the silylation degree, the increased self-diffusion coefficient due to the surface effect could basically offset the decreased self-diffusion coefficient owing to the scale effect. In the four nanochannels, when the local diffusion coefficient of fluid water was in the range of 8 Å close to the wall, Dz was greater than Dxy, and beyond the range of 8 Å of the wall, the Dz was smaller than Dxy.


1992 ◽  
Vol 47 (10) ◽  
pp. 1047-1050 ◽  
Author(s):  
C. Herdlicka ◽  
J. Richter ◽  
M. D. Zeidler

AbstractSelf-diffusion coefficients of 7Li+ ions have been measured in molten LiNO3 with several compositions of 6Li+ and 7Li+ over a temperature range from 537 to 615 K. The NMR spin-echo method with pulsed field gradients was applied. It was found that the self-diffusion coefficient depends on the isotopic composition and shows a maximum at equimolar ratio. At temperatures above 600 K this behaviour disappears.


2016 ◽  
Vol 30 (11) ◽  
pp. 1650064 ◽  
Author(s):  
Dipendra Bhandari ◽  
N. P. Adhikari

Molecular dynamics study of diffusion of two krypton atoms in 300 SPC/E water molecules at temperatures 293, 303, 313, 323 and 333 K has been carried out. Self-diffusion coefficient of krypton and water along with their mutual diffusion coefficients are estimated. Self-diffusion coefficient for krypton is calculated by using Mean Square Displacement (MSD) method and Velocity Autocorrelation (VACF) method, while that for water is calculated by using MSD method only. The mutual diffusion coefficient is estimated by using the Darken’s relation. The diffusion coefficients are found to follow the Arrhenius behavior. The structural properties of the system have been estimated by the study of solute–solute, solvent–solvent, and solute–solvent Radial Distribution Function (RDF).


1987 ◽  
Vol 42 (9) ◽  
pp. 1014-1016 ◽  
Author(s):  
E. Hawlicka

The self-diffusion coefficient of sodium, chloride and iodide ions in acetonitrile-water mixtures at 25.0 ± 0.05 °C has been measured in dependence on the salt molarity in the range 1.0 ·10-4 1.0 ·10-2 mol/dm3. The ionic self-diffusion coefficients in infinitely diluted solutions have been computed. The influence of the solvent composition on the solvation of the ions is discussed. Preferential solvation of the ions by acetonitrile above 15m ol% of acetonitrile has been found. An effect of the sodium ions on the formation of acetonitrile globules is postulated.


Sign in / Sign up

Export Citation Format

Share Document