Self-Diffusion of Sodium, Chloride and Iodide Ions in Acetonitrile-Water Mixtures

1987 ◽  
Vol 42 (9) ◽  
pp. 1014-1016 ◽  
Author(s):  
E. Hawlicka

The self-diffusion coefficient of sodium, chloride and iodide ions in acetonitrile-water mixtures at 25.0 ± 0.05 °C has been measured in dependence on the salt molarity in the range 1.0 ·10-4 1.0 ·10-2 mol/dm3. The ionic self-diffusion coefficients in infinitely diluted solutions have been computed. The influence of the solvent composition on the solvation of the ions is discussed. Preferential solvation of the ions by acetonitrile above 15m ol% of acetonitrile has been found. An effect of the sodium ions on the formation of acetonitrile globules is postulated.

1986 ◽  
Vol 41 (7) ◽  
pp. 939-943 ◽  
Author(s):  
E. Hawlicka

The self-diffusion coefficients of Na+, Cl- and I- in methanol-water solutions at 35 ± 0.01 °C have been measured in their dependence on the salt molarity in the range 1 · 10-4- 1 · 10-2 mol dm -3. The ionic self-diffusion coefficients in infinitely diluted solutions have been computed. The influence of the solvent composition on the solvation of the ions is discussed. A preferential hydration of Na+, Cl- and I- ions in water-methanol mixtures has been found.


1992 ◽  
Vol 47 (10) ◽  
pp. 1047-1050 ◽  
Author(s):  
C. Herdlicka ◽  
J. Richter ◽  
M. D. Zeidler

AbstractSelf-diffusion coefficients of 7Li+ ions have been measured in molten LiNO3 with several compositions of 6Li+ and 7Li+ over a temperature range from 537 to 615 K. The NMR spin-echo method with pulsed field gradients was applied. It was found that the self-diffusion coefficient depends on the isotopic composition and shows a maximum at equimolar ratio. At temperatures above 600 K this behaviour disappears.


1963 ◽  
Vol 43 (1) ◽  
pp. 44-51 ◽  
Author(s):  
A. S. Patil ◽  
K. M. King ◽  
M. H. Miller

A non steady-state method was used for the laboratory determination of the self-diffusion coefficient of rubidium in loam soil at soil moisture tensions of.16, 1.17, and 15 atmospheres. Soil volumes (half-cells) 1.0 centimeter long and 2.5 centimeters in diameter, containing rubidium labelled with Rb86, were placed in contact with similar but unlabelled half-cells. After varying time periods, the half-cells were separated and extracted with 1N NH4Ac, and the transfer of Rb86 determined.The diffusion followed the simple theory. The self-diffusion coefficients for rubidium at 25 °C. were as follows: 16 × 10−4 cm.2/hr. at 0.16 atm.; 4.9 × 10−4 cm.2/hr. at 1.17 atm.; 2.3 × 10−4 cm.2/hr. at 15 atm. In free solution, the self-diffusion coefficient is 7.2 × 10−2 cm.2/hr.


1963 ◽  
Vol 60 (2) ◽  
pp. 239-244 ◽  
Author(s):  
I. J. Graham-Bryce

Self-diffusion coefficients (D) for Rb+ have been measured in a heteroionic Lower Greensand soil over a wide range of moisture contents at three different compactions. The moisture content is shown to have a considerable effect on the value of the self-diffusion coefficient, a rapid rise in the value of D taking place between 5 and 10% moisture content. It is shown that this effect is not simply due to the increased volume of water-filled pore space at higher moisture contents, and other possible factors which could influence the shape of the diffusion coefficient/moisture content curve are discussed. Diffusion coefficients for Rb+ in eight other soils at pF 2 are also reported, but no simple correlation with any of several soil properties measured could be found. A value of 1·0 × 10−7cm2/sec. would seem to be a reasonable generalization for the self-diffusion coefficient of Rb+ in moist calcium-dominated soils.


2012 ◽  
Vol 457-458 ◽  
pp. 249-252
Author(s):  
Guo Cai Tian ◽  
Ding Wang ◽  
Ya Dong Li

Influences of the molar fractions of AlCl3and temperature on room temperature molten salts 1-ethyl-3-methyl-imidazolium Chloride /Chloroaluminate [Emim]Cl/AlCl3are studied by molecular dynamics simulation. The physical and chemical properties such as density, diffusion coefficients, viscosity, conductivity of [Emim]Cl/AlCl3with different molar fraction of AlCl3are calculated. The density is obtained as 1.1744g/cm3for [Emim]Cl, which agree well with the experimental value (1.186g/cm3). It was shown that the density and conductivity increase, whereas the viscosity decreases with the increasing of molar fraction of AlCl3. The self-diffusion coefficients of [Emim]+, Cl-and AlCl3increases and the changes of self-diffusion coefficient of AlCl3is the biggest as to molar fraction increase. It is shown that the conductivity, the self-diffusion coefficient of particles all increase, and the changes of AlCl3is the biggest with the increasing of temperature, whereas the density and viscosity reduce.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 4030
Author(s):  
Gengbiao Chen ◽  
Zhiwen Liu

The diffusion behavior of fluid water in nanochannels with hydroxylation of silica gel and silanization of different modified chain lengths was simulated by the equilibrium molecular dynamics method. The diffusion coefficient of fluid water was calculated by the Einstein method and the Green–Kubo method, so as to analyze the change rule between the modification degree of nanochannels and the diffusion coefficient of fluid water. The results showed that the diffusion coefficient of fluid water increased with the length of the modified chain. The average diffusion coefficient of fluid water in the hydroxylated nanochannels was 8.01% of the bulk water diffusion coefficient, and the diffusion coefficients of fluid water in the –(CH2)3CH3, –(CH2)7CH3, and –(CH2)11CH3 nanochannels were 44.10%, 49.72%, and 53.80% of the diffusion coefficients of bulk water, respectively. In the above four wall characteristic models, the diffusion coefficients in the z direction were smaller than those in the other directions. However, with an increase in the silylation degree, the increased self-diffusion coefficient due to the surface effect could basically offset the decreased self-diffusion coefficient owing to the scale effect. In the four nanochannels, when the local diffusion coefficient of fluid water was in the range of 8 Å close to the wall, Dz was greater than Dxy, and beyond the range of 8 Å of the wall, the Dz was smaller than Dxy.


2010 ◽  
Vol 152-153 ◽  
pp. 1607-1610 ◽  
Author(s):  
Wei Chan Cao ◽  
Shu Hua Liang ◽  
Yue Xin Xue ◽  
Xian Hui Wang

In order to gain a deep insight into the mechanism of Ni-doped Mo activated sintering process, the diffusion behavior of Mo-Ni interface was studied utilizing a Mo-Ni diffusion couple. The phase structure and composition on the diffusion layer were characterized and analyzed by means of scanning electron microscope and transmission electron microscope, the self diffusion coefficient and interdiffusion coefficient were calculated. The results show that a diffusion layer is formed between Mo and Ni after sintering at 1223k for 1h, which is comprised of a δ-NiMo intermetallic compound and a limit solid solution containing small amounts of nickel. The self diffusion coefficient and interdiffusion coefficient are 2.068×10-18cm2/s and 4.5×10-12cm2/s, respectively. It is suggested that the diffusion rate of Mo in δ-NiMo intermetallic compound and a limit solid solution containing small amounts of nickel is 106 times bigger than that of self diffusion, and the intermetallic compound layer provides a short diffusion path for Mo activated sintering.


Sign in / Sign up

Export Citation Format

Share Document