scholarly journals Indole-Diterpene Gene Cluster from Aspergillus flavus

2004 ◽  
Vol 70 (11) ◽  
pp. 6875-6883 ◽  
Author(s):  
Shuguang Zhang ◽  
Brendon J. Monahan ◽  
Jan S. Tkacz ◽  
Barry Scott

ABSTRACT Aflatrem is a potent tremorgenic mycotoxin produced by the soil fungus Aspergillus flavus and is a member of a large structurally diverse group of secondary metabolites known as indole-diterpenes. By using degenerate primers for conserved domains of fungal geranylgeranyl diphosphate synthases, we cloned two genes, atmG and ggsA (an apparent pseudogene), from A. flavus. Adjacent to atmG are two other genes, atmC and atmM. These three genes have 64 to 70% amino acid sequence similarity and conserved synteny with a cluster of orthologous genes, paxG, paxC, and paxM, from Penicillium paxilli which are required for indole-diterpene biosynthesis. atmG, atmC, and atmM are coordinately expressed, with transcript levels dramatically increasing at the onset of aflatrem biosynthesis. A genomic copy of atmM can complement a paxM deletion mutant of P. paxilli, demonstrating that atmM is a functional homolog of paxM. Thus, atmG, atmC, and atmM are necessary, but not sufficient, for aflatrem biosynthesis by A. flavus. This provides the first genetic evidence for the biosynthetic pathway of aflatrem in A. flavus.

2009 ◽  
Vol 75 (23) ◽  
pp. 7469-7481 ◽  
Author(s):  
Matthew J. Nicholson ◽  
Albert Koulman ◽  
Brendon J. Monahan ◽  
Beth L. Pritchard ◽  
Gary A. Payne ◽  
...  

ABSTRACT Aflatrem is a potent tremorgenic toxin produced by the soil fungus Aspergillus flavus, and a member of a structurally diverse group of fungal secondary metabolites known as indole-diterpenes. Gene clusters for indole-diterpene biosynthesis have recently been described in several species of filamentous fungi. A search of Aspergillus complete genome sequence data identified putative aflatrem gene clusters in the genomes of A. flavus and Aspergillus oryzae. In both species the genes for aflatrem biosynthesis cluster at two discrete loci; the first, ATM1, is telomere proximal on chromosome 5 and contains a cluster of three genes, atmG, atmC, and atmM, and the second, ATM2, is telomere distal on chromosome 7 and contains five genes, atmD, atmQ, atmB, atmA, and atmP. Reverse transcriptase PCR in A. flavus demonstrated that aflatrem biosynthesis transcript levels increased with the onset of aflatrem production. Transfer of atmP and atmQ into Penicillium paxilli paxP and paxQ deletion mutants, known to accumulate paxilline intermediates paspaline and 13-desoxypaxilline, respectively, showed that AtmP is a functional homolog of PaxP and that AtmQ utilizes 13-desoxypaxilline as a substrate to synthesize aflatrem pathway-specific intermediates, paspalicine and paspalinine. We propose a scheme for aflatrem biosynthesis in A. flavus based on these reconstitution experiments in P. paxilli and identification of putative intermediates in wild-type cultures of A. flavus.


2004 ◽  
Vol 36 (2) ◽  
pp. 111-117 ◽  
Author(s):  
Sheng Wang ◽  
Fu-Di Zhong ◽  
Yong-Jiang Zhang ◽  
Zu-Jian Wu ◽  
Qi-Ying Lin ◽  
...  

Abstract A new lectin, named UPL1, was purified from a green alga Ulva pertusa by an affinity chromatography on the bovine-thyroglobulin-Sepharose 4B column. The molecular mass of the algal lectin was about 23 kD by SDS-PAGE, and it specifically agglutinated rabbit erythrocytes. The hemagglutinating activity for rabbit erythrocytes could be inhibited by bovine thyroglobulin and N-acetyl-D-glucosamine. The lectin UPL1 required divalent cations for maintenance of its biological activity, and was heat-stable, and had higher activity within pH 6–8. The N-terminal amino acid sequence of the purified lectin was determined (P83209) and a set of degenerate primers were designed. The full-length cDNA of the lectin was cloned by rapid amplification of cDNA ends (RACE) method (AY433960). Sequence analysis of upl1 indicated it was 1084 bp long, and encoded a premature protein of 203 amino acids. The N-terminal sequence of the mature UPL1 polypeptide started at amino acid 54 of the deduced sequence from the cDNA, indicating 53 amino acids lost due to posttranslational modification. The primary structure of the Ulva pertusa lectin did not show amino acid sequence similarity with known plant and animal lectins. Hence, this protein may be the paradigm of a novel lectin family.


2004 ◽  
Vol 70 (3) ◽  
pp. 1297-1306 ◽  
Author(s):  
Daisuke Ishiyama ◽  
Dusica Vujaklija ◽  
Julian Davies

ABSTRACT A novel salicylate-degrading Streptomyces sp., strain WA46, was identified by UV fluorescence on solid minimal medium containing salicylate; trace amounts of gentisate were detected by high-pressure liquid chromatography when strain WA46 was grown with salicylate. PCR amplification of WA46 DNA with degenerate primers for gentisate 1,2-dioxygenase (GDO) genes produced an amplicon of the expected size. Sequential PCR with nested GDO primers was then used to identify a salicylate degradation gene cluster in a plasmid library of WA46 chromosomal DNA. The nucleotide sequence of a 13.5-kb insert in recombinant plasmid pWD1 (which was sufficient for the complete degradation of salicylate) showed that nine putative open reading frames (ORFs) (sdgABCDEFGHR) were involved. Plasmid pWD1 derivatives disrupted in each putative gene were transformed into Streptomyces lividans TK64. Disruption of either sdgA or sdgC blocked salicylate degradation; constructs lacking sdgD accumulated gentisate. Cell extracts from Escherichia coli DH5α transformants harboring pUC19 that expressed each of the sdg ORFs showed that conversions of salicylate to salicylyl-coenzyme A (CoA) and salicylyl-CoA to gentisyl-CoA required SdgA and SdgC, respectively. SdgA required CoA and ATP as cofactors, while NADH was required for SdgC activity; SdgC was identified as salicylyl-CoA 5-hydroxylase. Gentisyl-CoA underwent spontaneous cleavage to gentisate and CoA. SdgA behaved as a salicylyl-CoA ligase despite showing amino acid sequence similarity to an AMP-ligase. SdgD was identified as a GDO. These results suggest that Streptomyces sp. strain WA46 degrades salicylate by a novel pathway via a CoA derivative. Two-dimensional polyacrylamide gel electrophoresis and reverse transcriptase-PCR studies indicated that salicylate induced expression of the sdg cluster.


Author(s):  
Ai-Hua Wang ◽  
Lan Yang ◽  
Xin-Zhuan Yao ◽  
Xiao-Peng Wen

AbstractPhosphoethanolamine N-methyltransferase (PEAMTase) catalyzes the methylation of phosphoethanolamine to produce phosphocholine and plays an important role in the abiotic stress response. Although the PEAMT genes has been isolated from many species other than pitaya, its role in the drought stress response has not yet been fully elucidated. In the present study, we isolated a 1485 bp cDNA fragment of HpPEAMT from pitaya (Hylocereus polyrhizus). Phylogenetic analysis showed that, during its evolution, HpPEAMT has shown a high degree of amino acid sequence similarity with the orthologous genes in Chenopodiaceae species. To further investigate the function of HpPEAMT, we generated transgenic tobacco plants overexpressing HpPEAMT, and the transgenic plants accumulated significantly more glycine betaine (GB) than did the wild type (WT). Drought tolerance trials indicated that, compared with those of the wild-type (WT) plants, the roots of the transgenic plants showed higher drought tolerance ability and exhibited improved drought tolerance. Further analysis revealed that overexpression of HpPEAM in Nicotiana tabacum resulted in upregulation of transcript levels of GB biosynthesis-related genes (NiBADH, NiCMO and NiSDC) in the leaves. Furthermore, compared with the wild-type plants, the transgenic tobacco plants displayed a significantly lower malondialdehyde (MDA) accumulation and higher activities of the superoxide dismutase (SOD) and peroxidase (POD) antioxidant enzymes under drought stress. Taken together, our results suggested that HpPEAMT enhanced the drought tolerance of transgenic tobacco.


2017 ◽  
Vol 91 (6) ◽  
Author(s):  
Yi-Jiun Pan ◽  
Tzu-Lung Lin ◽  
Ching-Ching Chen ◽  
Yun-Ting Tsai ◽  
Yi-Hsiang Cheng ◽  
...  

ABSTRACT The genome of the multihost bacteriophage ΦK64-1, capable of infecting Klebsiella capsular types K1, K11, K21, K25, K30, K35, K64, and K69, as well as new capsular types KN4 and KN5, was analyzed and revealed that 11 genes (S1-1, S1-2, S1-3, S2-1, S2-2, S2-3, S2-4, S2-5, S2-6, S2-7, and S2-8) encode proteins with amino acid sequence similarity to tail fibers/spikes or lyases. S2-5 previously was shown to encode a K64 capsule depolymerase (K64dep). Specific capsule-degrading activities of an additional eight putative capsule depolymerases (S2-4 against K1, S1-1 against K11, S1-3 against K21, S2-2 against K25, S2-6 against K30/K69, S2-3 against K35, S1-2 against KN4, and S2-1 against KN5) was demonstrated by expression and purification of the recombinant proteins. Consistent with the capsular type-specific depolymerization activity of these gene products, phage mutants of S1-2, S2-2, S2-3, or S2-6 lost infectivity for KN4, K25, K35, or K30/K69, respectively, indicating that capsule depolymerase is crucial for infecting specific hosts. In conclusion, we identified nine functional capsule depolymerase-encoding genes in a bacteriophage and correlated activities of the gene products to all ten hosts of this phage, providing an example of type-specific host infection mechanisms in a multihost bacteriophage. IMPORTANCE We currently identified eight novel capsule depolymerases in a multihost Klebsiella bacteriophage and correlated the activities of the gene products to all hosts of this phage, providing an example of carriage of multiple depolymerases in a phage with a wide capsular type host spectrum. Moreover, we also established a recombineering system for modification of Klebsiella bacteriophage genomes and demonstrated the importance of capsule depolymerase for infecting specific hosts. Based on the powerful tool for modification of phage genome, further studies can be conducted to improve the understanding of mechanistic details of Klebsiella phage infection. Furthermore, the newly identified capsule depolymerases will be of great value for applications in capsular typing.


1992 ◽  
Vol 288 (1) ◽  
pp. 117-121 ◽  
Author(s):  
E P Ko ◽  
H Akatsuka ◽  
H Moriyama ◽  
A Shinmyo ◽  
Y Hata ◽  
...  

To elucidate the reaction mechanism of xylanase, the identification of amino acids essential for its catalysis is of importance. Studies have indicated the possibility that the reaction mechanism of xylanase is similar to that of hen's egg lysozyme, which involves acidic amino acid residues. On the basis of this assumption, together with the three-dimensional structure of Bacillus pumilus xylanase and its amino acid sequence similarity to other xylanases of different origins, three acidic amino acids, namely Asp-21, Glu-93 and Glu-182, were selected for site-directed mutagenesis. The Asp residue was altered to either Ser or Glu, and the Glu residues to Ser or Asp. The purified mutant xylanases D21E, D21S, E93D, E93S, E182D and E182S showed single protein bands of about 26 kDa on SDS/PAGE. C.d. spectra of these mutant enzymes show no effect on the secondary structure of xylanase, except that of D21E, which shows a little variation. Furthermore, mutations of Glu-93 and Glu-182 resulted in a drastic decrease in the specific activity of xylanase as compared with mutation of Asp-21. On the basis of these results we propose that Glu-93 and Glu-182 are the best candidates for the essential catalytic residues of xylanase.


1994 ◽  
Vol 196 (1) ◽  
pp. 93-108
Author(s):  
D K Kakuda ◽  
C L MacLeod

Recent advances have made possible the isolation of the genes and their cDNAs encoding Na(+)-independent amino acid transporters. Two classes of amino acid 'uniporters' have been isolated. One class contains the mCAT (murine cationic amino acid transporter) gene family that encodes proteins predicted to span the membrane 12-14 times and exhibits structural properties similar to the GLUT (glucose transporter) family and to other well-known transporters. The other class consists of two known genes, rBAT (related to B system amino acid transporters) and 4F2hc, that share amino acid sequence similarity with alpha-amylases and alpha-glucosidases. They are type II glycoproteins predicted to span the membrane only once, yet they mediate the Na(+)-independent transport of cationic and zwitterionic amino acids in Xenopus oocytes. Mutations in the human rBAT gene have been identified by Palacín and his co-workers in several families suffering from a heritable form of cystinuria. This important finding clearly establishes a key role for rBAT in cystine transport. The two classes of amino acid transporters are compared with the well-studied GLUT family of Na(+)-independent glucose transporters.


Coronaviruses ◽  
2021 ◽  
Vol 02 ◽  
Author(s):  
Amaresh Mishra ◽  
Nisha Nair ◽  
Vishwas Tripathi ◽  
Yamini Pathak ◽  
Jaseela Majeed

: The Coronavirus Disease 2019 (COVID-19), also known as a novel coronavirus (2019-nCoV), reportedly originated from Wuhan City, Hubei Province, China. Coronavirus Disease 2019 rapidly spread all over the world within a short period. On January 30th, 2020, the World Health Organization (WHO) declared it a global epidemic. COVID-19 is a severe acute respiratory syndrome coronavirus (SARS-CoV) virus that evolves to respiratory, hepatic, gastrointestinal, and neurological complications, and eventually death. SARS-CoV and the Middle East Respiratory Syndrome coronavirus (MERS-CoV) genome sequences similar identity with 2019-nCoV or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, few amino acid sequences of 2019-nCoV differ from SARS-CoV and MERS-CoV. COVID-19 shares about 90% amino acid sequence similarity with SARS-CoV. Effective prevention methods should be taken in order to control this pandemic situation. Till now, there are no effective treatments available to treat COVID-19. This review provides information regarding COVID-19 history, epidemiology, pathogenesis, and molecular diagnosis. Also, we focus on the development of vaccines in the management of this COVID-19 pandemic and limiting the spread of the virus.


1994 ◽  
Vol 14 (2) ◽  
pp. 1137-1146
Author(s):  
J H Lammers ◽  
H H Offenberg ◽  
M van Aalderen ◽  
A C Vink ◽  
A J Dietrich ◽  
...  

The lateral elements of synaptonemal complexes (SCs) of the rat contain major components with relative electrophoretic mobilities (M(r)S) of 30,000 and 33,000. After one-dimensional separation of SC proteins on polyacrylamide-sodium dodecyl sulfate gels, these components show up as two broad bands. These bands contain closely related proteins, as judged from their peptide maps and immunological reactivity. Using affinity-purified polyclonal anti-30,000- and anti-33,000-M(r) component antibodies, we isolated a cDNA encoding at least one of the 30,000- or 33,000-M(r) SC components. The protein predicted from the nucleotide sequence of the cDNA, called SCP3 (for synaptonemal complex protein 3), has a molecular mass of 29.7 kDa and a pI value of 9.4. It has a potential nucleotide binding site and contains stretches that are predicted to be capable of forming coiled-coil structures. In the male rat, the gene encoding SCP3 is transcribed exclusively in the testis. SCP3 has significant amino acid similarity to the pM1 protein, which is one of the predicted products of an X-linked lymphocyte-regulated gene family of the mouse: there are 63% amino acid sequence similarity and 35% amino acid identity between the SCP3 and pM1 proteins. However, SCP3 differs from pM1 in several respects, and whether the proteins fulfill related functions is still an open question.


Sign in / Sign up

Export Citation Format

Share Document