scholarly journals Determination of the Efficacy of Two Building Decontamination Strategies by Surface Sampling with Culture and Quantitative PCR Analysis

2004 ◽  
Vol 70 (8) ◽  
pp. 4740-4747 ◽  
Author(s):  
Mark P. Buttner ◽  
Patricia Cruz ◽  
Linda D. Stetzenbach ◽  
Amy K. Klima-Comba ◽  
Vanessa L. Stevens ◽  
...  

ABSTRACT The efficacy of currently available decontamination strategies for the treatment of indoor furnishings contaminated with bioterrorism agents is poorly understood. Efficacy testing of decontamination products in a controlled environment is needed to ensure that effective methods are used to decontaminate domestic and workplace settings. An experimental room supplied with materials used in office furnishings (i.e., wood laminate, painted metal, and vinyl tile) was used with controlled dry aerosol releases of endospores of Bacillus atrophaeus (“Bacillus subtilis subsp. niger,” also referred to as BG), a Bacillus anthracis surrogate. Studies were performed using two test products, a foam decontaminant and chlorine dioxide gas. Surface samples were collected pre- and posttreatment with three sampling methods and analyzed by culture and quantitative PCR (QPCR). Additional aerosol releases with environmental background present on the surface materials were also conducted to determine if there was any interference with decontamination or sample analysis. Culture results indicated that 105 to 106 CFU per sample were present on surfaces before decontamination. After decontamination with the foam, no culturable B. atrophaeus spores were detected. After decontamination with chlorine dioxide gas, no culturable B. atrophaeus was detected in 24 of 27 samples (89%). However, QPCR analysis showed that B. atrophaeus DNA was still present after decontamination with both methods. Environmental background material had no apparent effect on decontamination, but inhibition of the QPCR assay was observed. These results demonstrate the effectiveness of two decontamination methods and illustrate the utility of surface sampling and QPCR analysis for the evaluation of decontamination strategies.

2007 ◽  
Vol 73 (11) ◽  
pp. 3505-3510 ◽  
Author(s):  
Mark P. Buttner ◽  
Patricia Cruz ◽  
Linda D. Stetzenbach ◽  
Tracy Cronin

ABSTRACT This research was designed to evaluate surface sampling protocols for use with culture and quantitative PCR (QPCR) amplification assay for detection of the gram-negative bacterial biothreat simulant Erwinia herbicola on a variety of surface materials. Surfaces selected for evaluation were wood laminate, glass and computer monitor screens, metal file cabinets, plastic arena seats, nylon seat cushions, finished concrete flooring, and vinyl tile flooring. Laboratory and test chamber studies were performed to evaluate two sampling methods, a sponge and a macrofoam swab, for detection of E. herbicola on surface materials. In laboratory trials, seven materials were inoculated with a known concentration of E. herbicola cells and samples were collected from the surfaces of the materials to determine sampling efficiencies. Culture analysis was ineffective for assessing E. herbicola collection efficiency because very few culturable cells were obtained from surface samples. QPCR demonstrated that E. herbicola DNA was present in high concentrations on all of the surface samples, and sampling efficiencies ranged from 0.7 to 52.2%, depending on the sampling method and the surface material. The swab was generally more efficient than the sponge for collection of E. herbicola from surfaces. Test chamber trials were also performed in which E. herbicola was aerosolized into the chamber and allowed to settle onto test materials. Surface sampling results supported those obtained in laboratory trials. The results of this study demonstrate the capabilities of QPCR to enhance the detection and enumeration of biocontaminants on surface materials and provide information on the comparability of sampling methods.


Plant Disease ◽  
2020 ◽  
Vol 104 (5) ◽  
pp. 1328-1334 ◽  
Author(s):  
Brian W. Bahder ◽  
Noemi Soto ◽  
De-Fen Mou ◽  
Alessandra R. Humphries ◽  
Ericka E. Helmick

Lethal bronzing disease (LBD) is a fatal infection in a variety of ornamental palms in Florida caused by the 16SrIV-D phytoplasma. The disease was first found in 2006 in Florida and has since spread to 31 different counties, reaching as far north as Jacksonville and as far south as Key Largo. Stakeholders (nursery personnel, landscaping personnel, and extension agents) from across the state take and send samples for analysis. To provide better sampling recommendations and reduce the time associated with the sampling process, the distribution of the 16SrIV-D phytoplasma was examined by quantitative PCR analysis in various Phoenix sylvestris that displayed different stages of decline, including early symptoms, moderate symptoms, and late symptoms. A declining Sabal palmetto was also available for analysis and examined as well. The findings of this study revealed that regardless of the stage of decline, the highest amount of phytoplasma detected was nearest to the base of the trunk and gradually decreased further up the trunk. Also, in P. sylvestris it was found that with symptoms present, the entire trunk has a systemic infection, resulting in positive reactions for every sample taken. These data are useful to stakeholders because they provide useful sampling recommendations in that only a single sample is needed when sampling a palm suspected to be infected with phytoplasma. Also, based on these results, sampling lower on the trunk is advised.


2016 ◽  
Vol 36 (1) ◽  
pp. 100-108 ◽  
Author(s):  
Hyobi Kim ◽  
Bora Yum ◽  
Sung-Sik Yoon ◽  
Kyoung-Ju Song ◽  
Jong-Rak Kim ◽  
...  

PLoS ONE ◽  
2015 ◽  
Vol 10 (8) ◽  
pp. e0134890 ◽  
Author(s):  
Raman Bansal ◽  
Priyanka Mittapelly ◽  
Bryan J. Cassone ◽  
Praveen Mamidala ◽  
Margaret G. Redinbaugh ◽  
...  

2011 ◽  
Vol 236-238 ◽  
pp. 2939-2944 ◽  
Author(s):  
Ri Ya Jin ◽  
Shuang Qi Hu ◽  
Zhi Chao Chi

Experiments were conducted to investigate the effect of concentration and duration of chlorine dioxide gas treatment on Surface sterilization of grape at 25°C. The results showed that the values of inactivate bacterial log reduction ofBotrytis cinerea,Penicilliumandalternariaincreased with the increasing of ClO2gas concentrations and treatment time. When the concentrations and treatment time was about 10 mg/m3and 30 minutes, respectively, more than 4 log reduction was obtained for the three spoilage bacteria on grape surface. Furthermore, the effect of chlorine dioxide gas treatment on quality of grape was investigated. It was found that the contents of vitamin C (Vc) and reducing sugar (RS) in grape also increased compared with grape without ClO2gas treatment.


1970 ◽  
Vol 68 (2) ◽  
pp. 221-232 ◽  
Author(s):  
R. J. Gilbert

SUMMARYThere is no official scheme for testing disinfectants and detergent/disinfectants for use in the retail food trade and few recommended procedures have been given for the cleaning of equipment with these agents. Therefore, field trials were carried out in a large self-service store. Comparisons were made of the various cleaning efficiencies, as determined by bacterial plate counts, of detergent and disinfectant solutions and machine cleaning oils applied with either clean cloths or disposable paper towels to items of equipment. The most satisfactory results were always obtained when anionic detergent (0·75 % w/v) and hypochlorite (200 p.p.m. available chlorine) solutions were applied in a ‘two-step’ procedure.Tests were made to compare the calcium alginate swab-rinse and the agar sausage (Agaroid) techniques for the enumeration of bacteria on stainless steel, plastic, formica and wooden surfaces before and after a cleaning process. Although recovery rates were always greater by the swab-rinse technique, the agar sausage technique was considered to be a useful routine control method for surface sampling.


Plant Disease ◽  
2017 ◽  
Vol 101 (5) ◽  
pp. 726-733 ◽  
Author(s):  
Mengpei Guo ◽  
Yinbing Bian ◽  
Jinjie Wang ◽  
Gangzheng Wang ◽  
Xiaolong Ma ◽  
...  

A new partitivirus named Lentinula edodes partitivirus 1 (LePV1) was isolated from a diseased L. edodes strain with severe degeneration of the mycelium and imperfect browning in bag cultures. The nucleotide sequences of LePV1 dsRNA-1 and dsRNA-2 were determined; they were 2,382 bp and 2,245 bp in length, and each contained a single ORF encoding RNA-dependent RNA polymerase (RdRp) and coat protein (CP), respectively. The purified virus preparation contained isometric particles 34 nm in diameter encapsidating these dsRNAs. Phylogenetic analyses showed LePV1 to be a new member of Betapartitivirus, with the RdRp sequence most closely related to Grapevine partitivirus. RT-PCR analysis showed that 27 of the 56 Chinese L. edodes core collection strains carry LePV1, with the virus being more common in wild strains than cultivated strains. In addition, qPCR analysis suggested that coinfection with L. edodes mycovirus HKB (LeV-HKB) could increase replication of the RdRp gene of LePV1. This study may be essential for the development of more accurate disease diagnostics and the formulation of control strategies for viral diseases in L. edodes.


2016 ◽  
Vol 16 (1) ◽  
pp. 50 ◽  
Author(s):  
Florence Piron Prunier ◽  
Mathieu Chouteau ◽  
Annabel Whibley ◽  
Mathieu Joron ◽  
Violaine Llaurens

Sign in / Sign up

Export Citation Format

Share Document