scholarly journals Use of a Quartz Crystal Microbalance To Investigate the Antiadhesive Potential of N-Acetyl-l-Cysteine

2005 ◽  
Vol 71 (5) ◽  
pp. 2705-2712 ◽  
Author(s):  
Ann-Cathrin Olofsson ◽  
Malte Hermansson ◽  
Hans Elwing

ABSTRACT The reduction of bacterial biofilm formation on stainless steel surfaces by N-acetyl-l-cysteine (NAC) is attributed to effects on bacterial growth and polysaccharide production, as well as an increase in the wettability of steel surfaces. In this report, we show that NAC-coated stainless steel and polystyrene surfaces affect both the initial adhesion of Bacillus cereus and Bacillus subtilis and the viscoelastic properties of the interaction between the adhered bacteria and the surface. A quartz crystal microbalance with dissipation was shown to be a powerful and sensitive technique for investigating changes in the applied NAC coating for initial cell surface interactions of bacteria. The kinetics of frequency and dissipation shifts were dependent on the bacteria, the life cycle stage of the bacteria, and the surface. We found that exponentially grown cells gave rise to a positive frequency shift as long as their cell surface hydrophobicity was zero. Furthermore, when the characteristics of binding between the cell and the surface for different growth phases were compared, the rigidity increased from exponentially grown cells to starved cells. There was a trend in which an increase in the viscoelastic properties of the interaction, caused by the NAC coating on stainless steel, resulted in a reduction in irreversibly adhered cells. Interestingly, for B. cereus that adhered to polystyrene, the viscoelastic properties decreased, while there was a reduction in adhered cells, regardless of the life cycle stage. Altogether, NAC coating on surfaces was often effective and could both decrease the initial adhesion and increase the detachment of adhered cells and spores. The most effective reduction was found for B. cereus spores, for which the decrease was caused by a combination of these two parameters.

2020 ◽  
Vol 34 (8) ◽  
pp. 9283-9295 ◽  
Author(s):  
Fang Liu ◽  
Scott Hickman ◽  
Tabish Maqbool ◽  
Vincent Pauchard ◽  
Sanjoy Banerjee

2003 ◽  
Vol 69 (8) ◽  
pp. 4814-4822 ◽  
Author(s):  
Ann-Cathrin Olofsson ◽  
Malte Hermansson ◽  
Hans Elwing

ABSTRACT N-Acetyl-l-cysteine (NAC) is used in medical treatment of patients with chronic bronchitis. The positive effects of NAC treatment have primarily been attributed to the mucus-dissolving properties of NAC, as well as its ability to decrease biofilm formation, which reduces bacterial infections. Our results suggest that NAC also may be an interesting candidate for use as an agent to reduce and prevent biofilm formation on stainless steel surfaces in environments typical of paper mill plants. Using 10 different bacterial strains isolated from a paper mill, we found that the mode of action of NAC is chemical, as well as biological, in the case of bacterial adhesion to stainless steel surfaces. The initial adhesion of bacteria is dependent on the wettability of the substratum. NAC was shown to bind to stainless steel, increasing the wettability of the surface. Moreover, NAC decreased bacterial adhesion and even detached bacteria that were adhering to stainless steel surfaces. Growth of various bacteria, as monocultures or in a multispecies community, was inhibited at different concentrations of NAC. We also found that there was no detectable degradation of extracellular polysaccharides (EPS) by NAC, indicating that NAC reduced the production of EPS, in most bacteria tested, even at concentrations at which growth was not affected. Altogether, the presence of NAC changes the texture of the biofilm formed and makes NAC an interesting candidate for use as a general inhibitor of formation of bacterial biofilms on stainless steel surfaces.


1994 ◽  
Vol 57 (8) ◽  
pp. 720-724 ◽  
Author(s):  
KWANG Y. KIM ◽  
JOSEPH F. FRANK

Listeria monocytogenes cells grown in chemically defined minimal medium (D10), tryptic soy broth (TSB), and modifications of these media were used to determine the effect of growth nutrients on attachment ability. Stainless steel surfaces were submerged in various cell suspensions at 21°C for 4 h, and the numbers of attached cells were compared. Cells grown in D10 showed approximately 50-fold higher attachment than those grown in TSB. Addition of components of D10 to TSB did not affect the attachment ability of cells grown in TSB. The only modifications of D10, which affected attachment ability were a 10-fold increase of ammonium chloride concentration and a 1/10 reduction in iron, both of which resulted in decreases in attachment ability to one third of the D10 control. Replacement of glucose in D10 with mannose, cellobiose, fructose or trehalose did not effect cell attachment. Replacement of nitrogen components in D10 with tryptone decreased cell attachment to the equivalent level of cells grown in TSB. The reduced attachment ability of TSB-grown cells was not the result of hydrolyzed protein absorbing to the cell surface.


2011 ◽  
Vol 100 (2) ◽  
pp. 530-535 ◽  
Author(s):  
N. Sanjeeva Murthy ◽  
Fahmi Bedoui ◽  
Brian E. Kilfoyle ◽  
Carmine Iovine ◽  
Bozena Michniak-Kohn ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document