scholarly journals Rapid Quantification of the Toxic Alga Prymnesium parvum in Natural Samples by Use of a Specific Monoclonal Antibody and Solid-Phase Cytometry

2006 ◽  
Vol 72 (1) ◽  
pp. 860-868 ◽  
Author(s):  
N. J. West ◽  
R. Bacchieri ◽  
G. Hansen ◽  
C. Tomas ◽  
P. Lebaron ◽  
...  

ABSTRACT The increasing incidence of harmful algal blooms around the world and their associated health and economic effects require the development of methods to rapidly and accurately detect and enumerate the target species. Here we describe use of a solid-phase cytometer to detect and enumerate the toxic alga Prymnesium parvum in natural samples, using a specific monoclonal antibody and indirect immunofluorescence. The immunoglobulin G antibody 16E4 exhibited narrow specificity in that it recognized several P. parvum strains and a Prymnesium nemamethecum strain but it did not cross-react with P. parvum strains from Scandinavia or any other algal strains, including species of the closely related genus Chrysochromulina. Prymnesium sp. cells labeled with 16E4 were readily detected by the solid-phase cytometer because of the large fluorescence signal and the signal/noise ratio. Immunofluorescence detection and enumeration of cultured P. parvum cells preserved with different fixatives showed that the highest cell counts were obtained when cells were fixed with either glutaraldehyde or formaldehyde plus the cell protectant Pluronic F-68, whereas the use of formaldehyde alone resulted in significantly lower counts. Immunofluorescence labeling and analysis with the solid-phase cytometer of fixed natural samples from a bloom of P. parvum occurring in Lake Colorado in Texas gave cell counts that were close to those obtained by the traditional method of counting using light microscopy. These results show that a solid-phase cytometer can be used to rapidly enumerate natural P. parvum cells and that it could be used to detect other toxic algae, with an appropriate antibody or DNA probe.

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Sofia Abassi ◽  
Hui Wang ◽  
Bum Soo Park ◽  
Jong-Woo Park ◽  
Jang-Seu Ki

The marine dinoflagellateCochlodinium polykrikoidesis one of the most common ichthyotoxic species that causes harmful algal blooms (HABs), which leads to ecological damage and huge economic loss in aquaculture industries. Cyclophilins (CYPs) belong to the immunophilin superfamily, and they may play a role in the survival mechanisms of the dinoflagellate in stress environments. In the present study, we identified a novel cyclophilin gene fromC. polykrikoidesand examined physiological and gene transcriptional responses to biocides copper sulphate (CuSO4) and sodium hypochlorite (NaOCl). The full length ofCpCYPwas 903 bp, ranging from the dinoflagellate splice leader (DinoSL) sequence to the polyA tail, comprising a 639 bp ORF, a 117 bp 5′-UTR, and a 147 bp 3′-UTR. Motif and phylogenetic comparisons showed that CpCYP was affiliated to group B of CYP. In biocide stressors, cell counts, chlorophylla, and photosynthetic efficiency (Fv/Fm) ofC. polykrikoideswere considerably decreased in both exposure time- and dose-dependent manners. In addition,CpCYPgene expression was significantly induced after 24 h exposure to the biocide-treated stress conditions. These results indicate an effect of the biocides on the cell physiology and expression profile ofCpCYP, suggesting that the gene may play a role in environmental stress responses.


2018 ◽  
Vol 46 (2) ◽  
pp. 413-421 ◽  
Author(s):  
Ben A. Wagstaff ◽  
Edward S. Hems ◽  
Martin Rejzek ◽  
Jennifer Pratscher ◽  
Elliot Brooks ◽  
...  

Prymnesium parvum is a toxin-producing microalga that causes harmful algal blooms globally, which often result in large-scale fish kills that have severe ecological and economic implications. Although many toxins have previously been isolated from P. parvum, ambiguity still surrounds the responsible ichthyotoxins in P. parvum blooms and the biotic and abiotic factors that promote bloom toxicity. A major fish kill attributed to P. parvum occurred in Spring 2015 on the Norfolk Broads, a low-lying set of channels and lakes (Broads) found on the East of England. Here, we discuss how water samples taken during this bloom have led to diverse scientific advances ranging from toxin analysis to discovery of a new lytic virus of P. parvum, P. parvum DNA virus (PpDNAV-BW1). Taking recent literature into account, we propose key roles for sialic acids in this type of viral infection. Finally, we discuss recent practical detection and management strategies for controlling these devastating blooms.


2003 ◽  
Vol 69 (9) ◽  
pp. 5492-5502 ◽  
Author(s):  
David A. Caron ◽  
Mark R. Dennett ◽  
Dawn M. Moran ◽  
Rebecca A. Schaffner ◽  
Darcy J. Lonsdale ◽  
...  

ABSTRACT A method was developed for the rapid detection and enumeration of Aureococcus anophagefferens, the cause of harmful algal blooms called “brown tides” in estuaries of the Mid-Atlantic United States. The method employs a monoclonal antibody (MAb) and a colorimetric, enzyme-linked immunosorbent assay format. The MAb obtained exhibits high reactivity with A. anophagefferens and very low cross-reactivities with a phylogenetically diverse array of other protists and bacteria. Standard curves are constructed for each 96-well microtiter plate by using known amounts of a preserved culture of A. anophagefferens. This approach allows estimation of the abundance of the alga in natural samples. The MAb method was compared to an existing method that employs polyclonal antibodies and epifluorescence microscopy and to direct microscopic counts of A. anophagefferens in samples with high abundances of the alga. The MAb method provided increased quantitative accuracy and greatly reduced sample processing time. A spatial survey of several Long Island estuaries in May 2000 using this new approach documented a range of abundances of A. anophagefferens in these bays spanning nearly 3 orders of magnitude.


2012 ◽  
Vol 69 (8) ◽  
pp. 1389-1404 ◽  
Author(s):  
Daniel L. Roelke ◽  
Bryan W. Brooks ◽  
James P. Grover ◽  
George M. Gable ◽  
Leslie Schwierzke-Wade ◽  
...  

Effects of inflow on phytoplankton dynamics and assemblage structure have long been an interest of ecologists and resource managers, especially when they are linked to the incidence of harmful algal blooms. The frequency and magnitude of Prymnesium parvum bloom-preventing inflows likely in a drier landscape of south-central USA was explored, along with the relative importance of various factors important to blooms. We show that the number of large inflow events necessary to prevent blooms might decrease between 25% and 65% under drier conditions likely for this region. Long duration inflow events that are critical to lake flushing could nearly disappear, with inflow events lasting longer than 20 days decreasing 40-fold. These findings suggest that the frequency of P. parvum blooms and fish-kill events might increase in this region with human population and climate change. Multivariate analyses of monitoring data from multiple lakes indicate that other factors may be equally important to bloom occurrences. Inverse trends between toxic bloom events and nutrient concentrations, cyanobacteria, and lower pH are apparent. During periods when P. parvum populations were not toxic, an inverse relationship with zooplankton was observed. These other factors might be harnessed to mitigate P. parvum blooms in the future when inflows are reduced.


2021 ◽  
Vol 12 ◽  
Author(s):  
Morag Clinton ◽  
Elżbieta Król ◽  
Dagoberto Sepúlveda ◽  
Nikolaj R. Andersen ◽  
Andrew S. Brierley ◽  
...  

The gill of teleost fish is a multifunctional organ involved in many physiological processes, including protection of the mucosal gill surface against pathogens and other environmental antigens by the gill-associated lymphoid tissue (GIALT). Climate change associated phenomena, such as increasing frequency and magnitude of harmful algal blooms (HABs) put extra strain on gill function, contributing to enhanced fish mortality and fish kills. However, the molecular basis of the HAB-induced gill injury remains largely unknown due to the lack of high-throughput transcriptomic studies performed on teleost fish in laboratory conditions. We used juvenile rainbow trout (Oncorhynchus mykiss) to investigate the transcriptomic responses of the gill tissue to two (high and low) sublethal densities of the toxin-producing alga Prymnesium parvum, in relation to non-exposed control fish. The exposure time to P. parvum (4–5 h) was sufficient to identify three different phenotypic responses among the exposed fish, enabling us to focus on the common gill transcriptomic responses to P. parvum that were independent of dose and phenotype. The inspection of common differentially expressed genes (DEGs), canonical pathways, upstream regulators and downstream effects pointed towards P. parvum-induced inflammatory response and gill inflammation driven by alterations of Acute Phase Response Signalling, IL-6 Signalling, IL-10 Signalling, Role of PKR in Interferon Induction and Antiviral Response, IL-8 Signalling and IL-17 Signalling pathways. While we could not determine if the inferred gill inflammation was progressing or resolving, our study clearly suggests that P. parvum blooms may contribute to the serious gill disorders in fish. By providing insights into the gill transcriptomic responses to toxin-producing P. parvum in teleost fish, our research opens new avenues for investigating how to monitor and mitigate toxicity of HABs before they become lethal.


2018 ◽  
pp. 61-93 ◽  
Author(s):  
Maria Esther A. Meave del Castillo ◽  
María Eugenia Zamudio Resendiz

Background and Aims: Harmful algal blooms (HABs) affect the marine ecosystem in multiple ways. The objective was to document the species that produced blooms in Acapulco Bay over a 15-year period (2000-2015) and analyze the presence of these events with El Niño-Southern Oscillation (ENSO).Methods: Thirty-five collections, made during the years 2000, 2002-2004, 2006-2011, 2013-2015, were undertaken with phytoplankton nets and Van Dorn bottle, yielding 526 samples, of which 423 were quantified using the Utermöhl method. The relationship of HAB with ENSO was made with standardized values of Multivariate ENSO Index (MEI) and the significance was evaluated with the method quadrant sums of Olmstead-Tukey.Key results: Using data of cell density and high relative abundance (>60%), 53 blooms were recorded, most of them occurring during the rainy season (June-October) and dry-cold season (November-March), plus 37 blooms reported by other authors. These 90 blooms were composed of 40 taxa: 21 diatoms and 19 dinoflagellates, the former mostly innocuous. Sixty-seven blooms had species reported as noxious, of which 11 species commonly produce toxic HAB. Toxic taxa are Pseudo-nitzschia spp. (four taxa), and seven dinoflagellates.Conclusions: Abundance analyses of Pyrodinium bahamense var. compressum and Gymnodinium catenatum against values of MEI showed a clear tendency to produce HAB in La Niña conditions. Both taxa, producers of saxitoxins, cause paralytic shellfish poisoning (PSP) and coexist in Acapulco; therefore, they present a risk to human health. Another noxious 52 taxa found in Acapulco were currently considered potential HABs, because they have been recorded at low densities. Given the sharp differences in density values of bloom-forming species found in this work compared to those reported by other authors on similar dates, it is important to perform calibration tests to rule out possible errors in cell counts.


Fishes ◽  
2018 ◽  
Vol 3 (1) ◽  
pp. 11 ◽  
Author(s):  
Morten Svendsen ◽  
Nikolaj Andersen ◽  
Per Hansen ◽  
John Steffensen

Sign in / Sign up

Export Citation Format

Share Document