scholarly journals In Vivo Functional Assay of a Recombinant Aquaporin in Pichia pastoris

2006 ◽  
Vol 72 (2) ◽  
pp. 1507-1514 ◽  
Author(s):  
Mark J. Daniels ◽  
Malcolm R. Wood ◽  
Mark Yeager

ABSTRACT The water channel protein PvTIP3;1 (α-TIP) is a member of the major intrinsic protein (MIP) membrane channel family. We overexpressed this eukaryotic aquaporin in the methylotrophic yeast Pichia pastoris, and immunogold labeling of cellular cryosections showed that the protein accumulated in the plasma membrane, as well as vacuolar and other intracellular membranes. We then developed an in vivo functional assay for water channel activity that measures the change in optical absorbance of spheroplasts following an osmotic shock. Spheroplasts of wild-type P. pastoris displayed a linear relationship between absorbance and osmotic shock level. However, spheroplasts of P. pastoris expressing PvTIP3;1 showed a break in this linear relationship corresponding to hypo-osmotically induced lysis. It is the difference between control and transformed spheroplasts under conditions of hypo-osmotic shock that forms the basis of our aquaporin activity assay. The aquaporin inhibitor mercury chloride blocked water channel activity but had no effect on wild-type yeast. Osmotically shocked yeast cells were affected only slightly by expression of the Escherichia coli glycerol channel GlpF, which belongs to the MIP family but is a weak water channel. The important role that aquaporins play in human physiology has led to a growing interest in their potential as drug targets for treatment of hypertension and congestive heart failure, as well as other fluid overload states. The simplicity of this assay that is specific for water channel activity should enable rapid screening for compounds that modulate water channel activity.

2009 ◽  
Vol 75 (9) ◽  
pp. 2792-2797 ◽  
Author(s):  
Abul Kalam Azad ◽  
Yoshihiro Sawa ◽  
Takahiro Ishikawa ◽  
Hitoshi Shibata

ABSTRACT Water channels formed by aquaporins (AQPs) play an important role in the control of water homeostasis in individual cells and in multicellular organisms. Plasma membrane intrinsic proteins (PIPs) constitute a subclass of plant AQPs. TgPIP2;1 and TgPIP2;2 from tulip petals are members of the PIP family. In this study, we overexpressed TgPIP2;1 and TgPIP2;2 in Pichia pastoris and monitored their water channel activity (WCA) either by an in vivo spheroplast-bursting assay performed after hypo-osmotic shock or by growth assay. Osmolarity, pH, and inhibitors of AQPs, protein kinases (PKs), and protein phosphatases (PPs) affect the WCA of heterologous AQPs in this expression system. The WCA of TgPIP2;2-expressing spheroplasts was affected by inhibitors of PKs and PPs, which indicates that the water channel of this homologue is regulated by phosphorylation in P. pastoris. From the results reported herein, we suggest that P. pastoris can be employed as a heterologous expression system to assay the WCA of PIPs and to monitor the AQP-mediated channel gating mechanism, and it can be developed to screen inhibitors/effectors of PIPs.


Genetics ◽  
1999 ◽  
Vol 153 (4) ◽  
pp. 1573-1581 ◽  
Author(s):  
Susanna Chou ◽  
Sukalyan Chatterjee ◽  
Mark Lee ◽  
Kevin Struhl

Abstract The general transcription factor IIA (TFIIA) forms a complex with TFIID at the TATA promoter element, and it inhibits the function of several negative regulators of the TATA-binding protein (TBP) subunit of TFIID. Biochemical experiments suggest that TFIIA is important in the response to transcriptional activators because activation domains can interact with TFIIA, increase recruitment of TFIID and TFIIA to the promoter, and promote isomerization of the TFIID-TFIIA-TATA complex. Here, we describe a double-shut-off approach to deplete yeast cells of Toa1, the large subunit of TFIIA, to <1% of the wild-type level. Interestingly, such TFIIA-depleted cells are essentially unaffected for activation by heat shock factor, Ace1, and Gal4-VP16. However, depletion of TFIIA causes a general two- to threefold decrease of transcription from most yeast promoters and a specific cell-cycle arrest at the G2-M boundary. These results indicate that transcriptional activation in vivo can occur in the absence of TFIIA.


1992 ◽  
Vol 12 (9) ◽  
pp. 4084-4092
Author(s):  
P C McCabe ◽  
H Haubruck ◽  
P Polakis ◽  
F McCormick ◽  
M A Innis

The rap1A gene encodes a 21-kDa, ras-related GTP-binding protein (p21rap1A) of unknown function. A close structural homolog of p21rap1A (65% identity in the amino-terminal two-thirds) is the RSR1 gene product (Rsr1p) of Saccharomyces cerevisiae. Although Rsr1p is not essential for growth, its presence is required for nonrandom selection of bud sites. To assess the similarity of these proteins at the functional level, wild-type and mutant forms of p21rap1A were tested for complementation of activities known to be fulfilled by Rsr1p. Expression of p21rap1A, like multicopy expression of RSR1, suppressed the conditional lethality of a temperature-sensitive cdc24 mutation. Point mutations predicted to affect the localization of p21rap1A or its ability to cycle between GDP and GTP-bound states disrupted suppression of cdc24ts, while other mutations in the 61-65 loop region improved suppression. Expression of p21rap1A could not, however, suppress the random budding phenotype of rsr1 cells. p21rap1A also apparently interfered with the normal activity of Rsrlp, causing random budding in diploid wild-type cells, suggesting an inability of p21rap1A to interact appropriately with Rsr1p regulatory proteins. Consistent with this hypothesis, we found an Rsr1p-specific GTPase-activating protein (GAP) activity in yeast membranes which was not active toward p21rap1A, indicating that p21rap1A may be predominantly GTP bound in yeast cells. Coexpression of human Rap1-specific GAP suppressed the random budding due to expression of p21rap1A or its derivatives, including Rap1AVal-12. Although Rap1-specific GAP stimulated the GTPase of Rsr1p in vitro, it did not dominantly interfere with Rsr1p function in vivo. A chimera consisting of Rap1A1-165::Rsr1p166-272 did not exhibit normal Rsr1p function in the budding pathway. These results indicated that p21rap1A and Rsr1p share at least partial functional homology, which may have implications for p21rap1A function in mammalian cells.


2001 ◽  
Vol 21 (1) ◽  
pp. 175-184 ◽  
Author(s):  
Omri Erez ◽  
Chaim Kahana

ABSTRACT Although most cells are capable of transporting polyamines, the mechanism that regulates polyamine transport in eukaryotes is still largely unknown. Using a genetic screen for clones capable of restoring spermine sensitivity to spermine-tolerant mutants ofSaccharomyces cerevisiae, we have demonstrated that Sky1p, a recently identified SR protein kinase, is a key regulator of polyamine transport. Yeast cells deleted for SKY1 developed tolerance to toxic levels of spermine, while overexpression of Sky1p in wild-type cells increased their sensitivity to spermine. Expression of the wild-type Sky1p but not of a catalytically inactive mutant restored sensitivity to spermine. SKY1 disruption results in dramatically reduced uptake of spermine, spermidine, and putrescine. In addition to spermine tolerance, sky1Δ cells exhibit increased tolerance to lithium and sodium ions but somewhat increased sensitivity to osmotic shock. The observed halotolerance suggests potential regulatory interaction between the transport of polyamines and inorganic ions, as suggested in the case of the Ptk2p, a recently described regulator of polyamine transport. We demonstrate that these two kinases act in two different signaling pathways. While deletion or overexpression of SKY1 did not significantly affect Pma1p activity, the ability of overexpressed Sky1p, Ptk1p, and Ptk2p to increase sensitivity to LiCl depends on the integrity ofPPZ1 but not of ENA1.


1993 ◽  
Vol 13 (7) ◽  
pp. 4087-4097
Author(s):  
J Wang ◽  
N Suzuki ◽  
Y Nishida ◽  
T Kataoka

In Saccharomyces cerevisiae, adenylyl cyclase forms a complex with the 70-kDa cyclase-associated protein (CAP). By in vitro mutagenesis, we assigned a CAP-binding site of adenylyl cyclase to a small segment near its C terminus and created mutants which lost the ability to bind CAP. CAP binding was assessed first by observing the ability of the overproduced C-terminal 150 residues of adenylyl cyclase to sequester CAP, thereby suppressing the heat shock sensitivity of yeast cells bearing the activated RAS2 gene (RAS2Val-19), and then by immunoprecipitability of adenylyl cyclase activity with anti-CAP antibody and by direct measurement of the amount of CAP bound. Yeast cells whose chromosomal adenylyl cyclase genes were replaced by the CAP-nonbinding mutants possessed adenylyl cyclase activity fully responsive to RAS2 protein in vitro. However, they did not exhibit sensitivity to heat shock in the RAS2Val-19 background. When glucose-induced accumulation of cyclic AMP (cAMP) was measured in these mutants carrying RAS2Val-19, a rapid transient rise indistinguishable from that of wild-type cells was observed and a high peak level and following persistent elevation of the cAMP concentration characteristic of RAS2Val-19 were abolished. In contrast, in the wild-type RAS2 background, similar cyclase gene replacement did not affect the glucose-induced cAMP response. These results suggest that the association with CAP, although not involved in the in vivo response to the wild-type RAS2 protein, is somehow required for the exaggerated response of adenylyl cyclase to activated RAS2.


1997 ◽  
Vol 272 (2) ◽  
pp. F235-F241 ◽  
Author(s):  
K. Ishibashi ◽  
S. Sasaki ◽  
K. Fushimi ◽  
T. Yamamoto ◽  
M. Kuwahara ◽  
...  

Aquaporin-3 (AQP3) is unique in its structure (lowest homology with other aquaporins) and in its function (significantly conductive to both small nonelectrolytes and water). However, there is a controversy among researchers on its water transport and induction by dehydration. We examined its localization and the effect of dehydration on its expression in the kidney, as well as its water channel activity when expressed in Xenopus oocytes. In vitro translation using reticulocyte lysate revealed that the size of rat AQP3 was 26 kDa, and the band shifted to around 31 kDa with microsomal fraction, which was sensitive to the digestion with N-glycosidase F. In Western blot analysis of rat kidney medulla, AQP3 appeared as a sharp band at 27 kDa and a broad band at 34-40 kDa. In immunohistochemistry, AQP3 was localized to principal cells and absent in intercalated cells in outer medulla. In inner medulla, AQP3 was restricted to inner medullary collecting duct (IMCD) cells. AQP3 was confined to the basolateral membrane of these cells. Although dehydration of rats for 2 days did not change the distribution pattern of AQP3 in IMCD cells, the dehydration increased AQP3 mRNA by twofold with slight increase of its protein level in kidney medulla. Finally, we confirmed its water channel activity when expressed in Xenopus oocytes. The human AQP3 stimulated osmotic water permeability by eightfold, which was inhibited by 0.3 mM mercury chloride by 34% and reversed by beta-mercaptoethanol. Our results indicate that AQP3 is a glycosylated protein and a mercury-sensitive water channel localized at the basolateral membrane of principal cells and IMCD cells, and its expression is induced by dehydration at both protein and mRNA level.


2004 ◽  
Vol 3 (6) ◽  
pp. 1574-1588 ◽  
Author(s):  
R. Martin ◽  
A. Walther ◽  
J. Wendland

ABSTRACT Cytoplasmic dynein is a microtubule-associated minus-end-directed motor protein. CaDYN1 encodes the single dynein heavy-chain gene of Candida albicans. The open reading frames of both alleles of CaDYN1 were completely deleted via a PCR-based approach. Cadyn1 mutants are viable but grow more slowly than the wild type. In vivo time-lapse microscopy was used to compare growth of wild-type (SC5314) and dyn1 mutant strains during yeast growth and after hyphal induction. During yeast-like growth, Cadyn1 strains formed chains of cells. Chromosomal TUB1-GFP and HHF1-GFP alleles were used both in wild-type and mutant strains to monitor the orientation of mitotic spindles and nuclear positioning in C. albicans. In vivo fluorescence time-lapse analyses with HHF1-GFP over several generations indicated defects in dyn1 cells in the realignment of spindles with the mother-daughter axis of yeast cells compared to that of the wild type. Mitosis in the dyn1 mutant, in contrast to that of wild-type yeast cells, was very frequently completed in the mother cells. Nevertheless, daughter nuclei were faithfully transported into the daughter cells, resulting in only a small number of multinucleate cells. Cadyn1 mutant strains responded to hypha-inducing media containing l-proline or serum with initial germ tube formation. Elongation of the hyphal tubes eventually came to a halt, and these tubes showed a defect in the tipward localization of nuclei. Using a heterozygous DYN1/dyn1 strain in which the remaining copy was controlled by the regulatable MAL2 promoter, we could switch between wild-type and mutant phenotypes depending on the carbon source, indicating that the observed mutant phenotypes were solely due to deletion of DYN1.


1991 ◽  
Vol 11 (6) ◽  
pp. 3105-3114
Author(s):  
J Schnier ◽  
H G Schwelberger ◽  
Z Smit-McBride ◽  
H A Kang ◽  
J W Hershey

Translation intitiation factor eIF-5A (previously named eIF-4D) is a highly conserved protein that promotes formation of the first peptide bond. One of its lysine residues is modified by spermidine to form hypusine, a posttranslational modification unique to eIF-5A. To elucidate the function of eIF-5A and determine the role of its hypusine modification, the cDNA encoding human eIF-5A was used as a probe to identify and clone the corresponding genes from the yeast Saccharomyces cerevisiae. Two genes named TIF51A and TIF51B were cloned and sequenced. The two yeast proteins are closely related, sharing 90% sequence identity, and each is ca. 63% identical to the human protein. The purified protein expressed from the TIF51A gene substitutes for HeLa eIF-5A in the mammalian methionyl-puromycin synthesis assay. Strains lacking the A form of eIF-5A, constructed by disruption of TIF51A with LEU2, grow slowly, whereas strains lacking the B form, in which HIS3 was used to disrupt TIF51B, show no growth rate phenotype. However, strains with both TIF51A and TIF51B disrupted are not viable, indicating that eIF-5a is essential for cell growth in yeast cells. Northern (RNA) blot analysis shows two mRNA species, a larger mRNA (0.9 kb) transcribed from TIF51A and a smaller mRNA (0.8 kb) encoded by TIF51B. Under the aerobic growth conditions of this study, the 0.8-kb TIF51B transcript is not detected in the wild-type strain and is expressed only when TIF51A is disrupted. The TIF51A gene was altered by site-directed mutagenesis at the site of hypusination by changing the Lys codon to that for Arg, thereby producing a stable protein that retains the positive charge but is not modified to the hypusine derivative. The plasmid shuffle technique was used to replace the wild-type gene with the mutant form, resulting in failure of the yeast cells to grow. This result indicates that hypusine very likely is required for the vital in vivo function of eIF-5A and suggests a precise, essential role for the polyamine spermidine in cell metabolism.


Author(s):  
Hitomi Nakamura ◽  
Masato Kiyoshi ◽  
Makoto Anraku ◽  
Noritaka Hashii ◽  
Naoko Oda-Ueda ◽  
...  

Abstract Glycoengineering of therapeutic proteins has been applied to improve the clinical efficacy of several therapeutics. Here, we examined the effect of glycosylation on the properties of the Fab of the therapeutic antibody, adalimumab. An N-glycosylation site was introduced at position 178 of the H-chain constant region of adalimumab Fab through site-directed mutagenesis (H: L178N Fab), and the H: L178N Fab was produced in Pichia pastoris. Expressed mutant Fab contained long and short glycan chains (L-glyco Fab and S-glyco Fab, respectively). Under the condition of aggregation of Fab upon pH shift-induced stress, both of L-glyco Fab and S-glyco Fab were less prone to aggregation, with L-glyco Fab suppressing aggregation more effectively than the S-glyco Fab. Moreover, the comparison of the antigenicity of glycosylated and wild-type Fabs in mice revealed that glycosylation resulted in the suppression of antigenicity. Analysis of the pharmacokinetic behavior of the Fab, L-glyco Fab, and S-glyco Fab indicated that the half-lives of glycosylated Fabs in the rats were shorter than that of wild-type Fab, with L-glyco Fab having a shorter half-life than S-glyco Fab. Thus, we demonstrated that the glycan chain influences Fab aggregation and immunogenicity, and glycosylation reduces the elimination half-life in vivo.


Sign in / Sign up

Export Citation Format

Share Document