Glycosylation decreases aggregation and immunogenicity of adalimumab fab secreted from Pichia pastoris

Author(s):  
Hitomi Nakamura ◽  
Masato Kiyoshi ◽  
Makoto Anraku ◽  
Noritaka Hashii ◽  
Naoko Oda-Ueda ◽  
...  

Abstract Glycoengineering of therapeutic proteins has been applied to improve the clinical efficacy of several therapeutics. Here, we examined the effect of glycosylation on the properties of the Fab of the therapeutic antibody, adalimumab. An N-glycosylation site was introduced at position 178 of the H-chain constant region of adalimumab Fab through site-directed mutagenesis (H: L178N Fab), and the H: L178N Fab was produced in Pichia pastoris. Expressed mutant Fab contained long and short glycan chains (L-glyco Fab and S-glyco Fab, respectively). Under the condition of aggregation of Fab upon pH shift-induced stress, both of L-glyco Fab and S-glyco Fab were less prone to aggregation, with L-glyco Fab suppressing aggregation more effectively than the S-glyco Fab. Moreover, the comparison of the antigenicity of glycosylated and wild-type Fabs in mice revealed that glycosylation resulted in the suppression of antigenicity. Analysis of the pharmacokinetic behavior of the Fab, L-glyco Fab, and S-glyco Fab indicated that the half-lives of glycosylated Fabs in the rats were shorter than that of wild-type Fab, with L-glyco Fab having a shorter half-life than S-glyco Fab. Thus, we demonstrated that the glycan chain influences Fab aggregation and immunogenicity, and glycosylation reduces the elimination half-life in vivo.

Endocrinology ◽  
2010 ◽  
Vol 151 (11) ◽  
pp. 5326-5336 ◽  
Author(s):  
Thomas V. Flintegaard ◽  
Peter Thygesen ◽  
Henrik Rahbek-Nielsen ◽  
Steven B. Levery ◽  
Claus Kristensen ◽  
...  

Therapeutic use of recombinant GH typically involves daily sc injections. We examined the possibilities for prolonging the in vivo circulation of GH by introducing N-glycans. Human GH variants with a single potential N-glycosylation site (N-X-S/T) introduced by site-directed mutagenesis were expressed in HEK293 cells. In a scan of 15 different positions for N-glycosylation sites, four positions (amino acids 93, 98, 99, and 101) were efficiently utilized and did not influence GH in vitro activity. A GH variant (3N-GH) with all these sites was produced in CHOK1SV cells and contained up to three N-glycans. Two pools of 3N-GH were purified and separated according to their charge by anion-exchange chromatography. Anion-exchange HPLC revealed that the N-glycans in the two pools were very similar except for the extent of sialylation. Both 3N-GH pools circulated longer in rats than wild-type GH. The terminal half-life of 3N-GH after iv injection was 24-fold prolonged compared with wild-type GH for the pool with the most pronounced sialylation, 13-fold prolonged for the less sialylated pool, and similar to the wild-type for desialylated 3N-GH. The less sialylated 3N-GH pool exhibited a profound pharmacodynamic effect in GH-deficient rats. Over a 4-d period, a single injection of 3N-GH induced a stronger IGF-I response and a larger increase in body weight than daily injections with wild-type GH. Thus, N-glycans can prolong the in vivo circulation and enhance the pharmacodynamic effect of GH. Sialic acids seem to play a pivotal role for the properties of glycosylated GH.


1999 ◽  
Vol 19 (4) ◽  
pp. 3167-3176 ◽  
Author(s):  
Magali Kitzmann ◽  
Marie Vandromme ◽  
Valerie Schaeffer ◽  
Gilles Carnac ◽  
Jean-Claude Labbé ◽  
...  

ABSTRACT We have examined the role of protein phosphorylation in the modulation of the key muscle-specific transcription factor MyoD. We show that MyoD is highly phosphorylated in growing myoblasts and undergoes substantial dephosphorylation during differentiation. MyoD can be efficiently phosphorylated in vitro by either purified cdk1-cyclin B or cdk1 and cdk2 immunoprecipitated from proliferative myoblasts. Comparative two-dimensional tryptic phosphopeptide mapping combined with site-directed mutagenesis revealed that cdk1 and cdk2 phosphorylate MyoD on serine 200 in proliferative myoblasts. In addition, when the seven proline-directed sites in MyoD were individually mutated, only substitution of serine 200 to a nonphosphorylatable alanine (MyoD-Ala200) abolished the slower-migrating hyperphosphorylated form of MyoD, seen either in vitro after phosphorylation by cdk1-cyclin B or in vivo following overexpression in 10T1/2 cells. The MyoD-Ala200 mutant displayed activity threefold higher than that of wild-type MyoD in transactivation of an E-box-dependent reporter gene and promoted markedly enhanced myogenic conversion and fusion of 10T1/2 fibroblasts into muscle cells. In addition, the half-life of MyoD-Ala200 protein was longer than that of wild-type MyoD, substantiating a role of Ser200 phosphorylation in regulating MyoD turnover in proliferative myoblasts. Taken together, our data show that direct phosphorylation of MyoD Ser200 by cdk1 and cdk2 plays an integral role in compromising MyoD activity during myoblast proliferation.


2005 ◽  
Vol 390 (1) ◽  
pp. 105-113 ◽  
Author(s):  
Åsa M. Kallas ◽  
Kathleen Piens ◽  
Stuart E. Denman ◽  
Hongbin Henriksson ◽  
Jenny Fäldt ◽  
...  

The cDNA encoding a xyloglucan endotransglycosylase, PttXET16A, from hybrid aspen (Populus tremula×tremuloides) has been isolated from an expressed sequence tag library and expressed in the methylotrophic yeast Pichia pastoris. Sequence analysis indicated a high degree of similarity with other proteins in the XTH (xyloglucan transglycosylase/hydrolase) gene subfamily of GH16 (glycoside hydrolase family 16). In addition to the conserved GH16 catalytic sequence motif, PttXET16A contains a conserved N-glycosylation site situated proximal to the predicted catalytic residues. MS analysis indicated that the recombinant PttXET16A expressed in P. pastoris is heterogeneous due to the presence of variable N-glycosylation and incomplete cleavage of the α-factor secretion signal peptide. Removal of the N-glycan by endoglycosidase H treatment did not influence the catalytic activity significantly. Similarly, site-directed mutagenesis of Asn93 to serine to remove the N-glycosylation site resulted in an enzyme which was comparable with the wild-type enzyme in specific activity and thermal stability but had clearly reduced solubility. Hydrolytic activity was detected neither in wild-type PttXET16A before or after enzymatic deglycosylation nor in PttXET16A N93S (Asn93→Ser) mutant.


2006 ◽  
Vol 72 (2) ◽  
pp. 1507-1514 ◽  
Author(s):  
Mark J. Daniels ◽  
Malcolm R. Wood ◽  
Mark Yeager

ABSTRACT The water channel protein PvTIP3;1 (α-TIP) is a member of the major intrinsic protein (MIP) membrane channel family. We overexpressed this eukaryotic aquaporin in the methylotrophic yeast Pichia pastoris, and immunogold labeling of cellular cryosections showed that the protein accumulated in the plasma membrane, as well as vacuolar and other intracellular membranes. We then developed an in vivo functional assay for water channel activity that measures the change in optical absorbance of spheroplasts following an osmotic shock. Spheroplasts of wild-type P. pastoris displayed a linear relationship between absorbance and osmotic shock level. However, spheroplasts of P. pastoris expressing PvTIP3;1 showed a break in this linear relationship corresponding to hypo-osmotically induced lysis. It is the difference between control and transformed spheroplasts under conditions of hypo-osmotic shock that forms the basis of our aquaporin activity assay. The aquaporin inhibitor mercury chloride blocked water channel activity but had no effect on wild-type yeast. Osmotically shocked yeast cells were affected only slightly by expression of the Escherichia coli glycerol channel GlpF, which belongs to the MIP family but is a weak water channel. The important role that aquaporins play in human physiology has led to a growing interest in their potential as drug targets for treatment of hypertension and congestive heart failure, as well as other fluid overload states. The simplicity of this assay that is specific for water channel activity should enable rapid screening for compounds that modulate water channel activity.


2017 ◽  
Vol 62 (2) ◽  
Author(s):  
Alexander J. Lepak ◽  
Miao Zhao ◽  
Brian VanScoy ◽  
Paul G. Ambrose ◽  
David R. Andes

ABSTRACT Echinocandins are important in the prevention and treatment of invasive candidiasis but limited by current dosing regimens that include daily intravenous administration. The novel echinocandin CD101 has a prolonged half-life of approximately 130 h in humans, making it possible to design once-weekly dosing strategies. The present study examined the pharmacodynamic activity of CD101 using the neutropenic invasive candidiasis mouse model against select Candida albicans (n = 4), C. glabrata (n = 3), and C. parapsilosis (n = 3) strains. The CD101 MIC ranged from 0.03 to 1 mg/liter. Plasma pharmacokinetic measurements were performed using uninfected mice after intraperitoneal administration of 1, 4, 16, and 64 mg/kg. The elimination half-life was prolonged at 28 to 41 h. Neutropenic mice were infected with each strain by lateral tail vein injection, treated with a single dose of CD101, and monitored for 7 days, at which time the organism burden was enumerated from the kidneys. Dose-dependent activity was observed for each organism. The pharmacokinetic/pharmacodynamic (PK/PD) index of the area under the concentration-time curve over 24 h in the steady state divided by the MIC (AUC/MIC index) correlated well with efficacy (R 2, 0.74 to 0.93). The median stasis 24-h free-drug AUC/MIC targets were as follows: for C. albicans, 2.92; for C. glabrata, 0.07; and for C. parapsilosis, 2.61. The PK/PD targets for 1-log10 kill endpoint were 2- to 4-fold higher. Interestingly, the aforementioned PK/PD targets of CD101 were numerically lower for all three species than those of other echinocandins. In summary, CD101 is a promising, novel echinocandin with advantageous pharmacokinetic properties and potent in vivo pharmacodynamic activity.


2020 ◽  
Vol 22 (1) ◽  
Author(s):  
Roghayyeh Baghban ◽  
Safar Farajnia ◽  
Younes Ghasemi ◽  
Reyhaneh Hoseinpoor ◽  
Azam Safary ◽  
...  

Abstract Background Ocriplasmin (Jetrea) is using for the treatment of symptomatic vitreomacular adhesion. This enzyme undergoes rapid inactivation and limited activity duration as a result of its autolytic nature after injection within the eye. Moreover, the proteolytic activity can cause photoreceptor damage, which may result in visual impairment in more serious cases. Results The present research aimed to reduce the disadvantages of ocriplasmin using site-directed mutagenesis. To reduce the autolytic activity of ocriplasmin in the first variant, lysine 156 changed to glutamic acid and, in the second variant for the proteolytic activity reduction, alanine 59 mutated to threonine. The third variant contained both mutations. Expression of wild type and three mutant variants of ocriplasmin constructs were done in the Pichia pastoris expression system. The mutant variants were analyzed in silico and in vitro and compared to the wild type. The kinetic parameters of ocriplasmin variants showed both variants with K156E substitution were more resistant to autolytic degradation than wild-type. These variants also exhibited reduced Kcat and Vmax values. An increase in their Km values, leading to a decreased catalytic efficiency (the Kcat/Km ratio) of autolytic and mixed variants. Moreover, in the variant with A59T mutation, Kcat and Vmax values have reduced compared to wild type. The mix variants showed the most increase in Km value (almost 2-fold) as well as reduced enzymatic affinity to the substrate. Thus, the results indicated that combined mutations at the ocriplasmin sequence were more effective compared with single mutations. Conclusions The results indicated such variants represent valuable tools for the investigation of therapeutic strategies aiming at the non-surgical resolution of vitreomacular adhesion.


2017 ◽  
Vol 5 (1) ◽  
pp. 11 ◽  
Author(s):  
Mohamed Elbadawy ◽  
Mohamed Aboubakr

The aim of present study was to determine the pharmacokinetics and tissue residues of tilmicosin phosphate (tilmicoral®) as well as its in vitro and in vivo evaluation for control of Mycoplasma gallisepticum (MG) infection in broiler chickens. Pharmacokinetics (single oral dose) and tissues residues (daily for five days) of tilmicosin (25 mg/kg b.wt) in broilers were investigated. Peak plasma concentration of tilmicosin was 1.25±0.0.09 μg/mL and achieved at 3.15±0.34 h. Elimination half-life was long (44.3±7.22 h) and Vdarea was large (1.25±0.082 L/kg). Residue study revealed a good distribution and penetration of tilmicosine in lung, liver, kidney and muscles. Tilmicosin could not be detected in all tested tissues (except in lung) at 6 days after last administration. The MIC of tilmicosin and tylosin against MG were 0.054 and 0.319 μg/mL, respectively. MG infected chickens and treated by tilmicosin or tylosin showed a significant (p<0.05) improvement in mean body weights gain and a significant (p<0.05) decline in mean clinical signs score, air sac lesion score and mortality rate, however tilmicosin was a superior drug. In conclusion, timicoral® was a very effective medication for controlling MG infection in broiler chickens due to its rapid absorption, long elimination half-life, rapid and extensive penetration from blood into tissues especially lungs and air sacs. Additionally, tilmicoral® had a short withdrawal time. Moreover, its superior efficacy (in vitro and in vivo) against MG.


2007 ◽  
Vol 51 (5) ◽  
pp. 1633-1642 ◽  
Author(s):  
David Andes ◽  
William A. Craig

ABSTRACT Dalbavancin is a lipoglycopeptide antibiotic with broad-spectrum activity against gram-positive cocci and a markedly prolonged serum elimination half-life. We used the neutropenic murine thigh and lung infection models to characterize the pharmacodynamics of dalbavancin. Single-dose pharmacokinetic studies demonstrated linear kinetics and a prolonged elimination half-life which ranged from 7.6 to 13.1 h over the dose range of 2.5 to 80 mg/kg of body weight. The level of protein binding in mouse serum was 98.4%. The time course of in vivo activity of dalbavancin over the same dose range was examined in neutropenic ICR Swiss mice infected with a strain of either Streptococcus pneumoniae or Staphylococcus aureus by using the thigh infection model. The burden of organisms for S. pneumoniae was markedly reduced over the initial 24 h of study, and organism regrowth was suppressed in a dose-dependent fashion for up to the entire 96 h of study following dalbavancin doses of 2.5 mg/kg or greater. Dalbavancin doses of 20 mg/kg or greater resulted in less killing of S. aureus but were still followed by a prolonged suppression of regrowth. Multiple-dosing-regimen studies with the same organisms were used to determined which of the pharmacodynamic indices (maximum concentration in serum [C max]/MIC, area under the concentration-versus-time curve [AUC]/MIC, or the duration of time that levels in serum exceed the MIC) best correlated with treatment efficacy. These studies used a dose range of 3.8 to 480 mg/kg/6 days fractionated into 2, 4, 6, or 12 doses over the 144-h dosing period. Nonlinear regression analysis was used to examine the data fit with each pharmacodynamic index. Dalbavancin administration by the use of large, widely spaced doses was the most efficacious for both organisms. Both the 24-h AUC/MIC and the C max/MIC parameters correlated well with the in vivo efficacy of treatment against S. pneumoniae and S. aureus (for 24-h AUC/MIC, R 2 = 78 and 77%, respectively; for C max/MIC, R 2 = 90 and 57%, respectively). The free-drug 24-h AUC/MICs required for a bacteriostatic effect were 17 ± 7 for five S. pneumoniae isolates. A similar treatment endpoint for the treatment against five strains of S. aureus required a larger dalbavancin exposure, with a mean free-drug 24-h AUC/MIC of 265 ± 143. Beta-lactam resistance did not affect the pharmacodynamic target. The dose-response curves were relatively steep for both species; thus, the pharmacodynamic target needed to achieve organism reductions of 1 or 2 log10 in the mice were not appreciably larger (1.3- to 1.6-fold). Treatment was similarly efficacious in neutropenic mice and in the lung infection model. The dose-dependent efficacy and prolonged elimination half-life of dalbavancin support the widely spaced regimens used in clinical trials. The free-drug 24-h AUC/MIC targets identified in these studies should be helpful for discerning rational susceptibility breakpoints. The current MIC90 for the target gram-positive organisms would fall within this value.


Viruses ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1071
Author(s):  
Ida Aksnes ◽  
Turhan Markussen ◽  
Stine Braaen ◽  
Espen Rimstad

Salmonid alphavirus (SAV) is the cause of pancreas disease and sleeping disease in farmed salmonid fish in Europe. The spread of these diseases has been difficult to control with biosecurity and current vaccination strategies, and increased understanding of the viral pathogenesis could be beneficial for the development of novel vaccine strategies. N-glycosylation of viral envelope proteins may be crucial for viral virulence and a possible target for its purposed attenuation. In this study, we mutated the N-glycosylation consensus motifs of the E1 and E2 glycoproteins of a SAV3 infectious clone using site-directed mutagenesis. Mutation of the glycosylation motif in E1 gave a complete inactivation of the virus as no viral replication could be detected in cell culture and infectious particles could not be rescued. In contrast, infectious virus particles could be recovered from the SAV3 E2 mutants (E2319Q, E2319A), but not if they were accompanied by lack of N-glycosylation in E1. Compared to the non-mutated infectious clone, the SAV3-E2319Q and SAV3-E2319A recombinant viruses produced less cytopathic effects in cell culture and lower amounts of infectious viral particles. In conclusion, the substitution in the N-linked glycosylation site in E2 attenuated SAV3 in cell culture. The findings could be useful for immunization strategies using live attenuated vaccines and testing in fish will be desirable to study the clone’s properties in vivo.


2014 ◽  
Vol 59 (1) ◽  
pp. 170-177 ◽  
Author(s):  
Geoffrey W. Birrell ◽  
Marina Chavchich ◽  
Arba L. Ager ◽  
Hong-Ming Shieh ◽  
Gavin D. Heffernan ◽  
...  

ABSTRACT4-(tert-Butyl)-2-((tert-butylamino)methyl)-6-(6-(trifluoromethyl)pyridin-3-yl)-phenol (JPC-2997) is a new aminomethylphenol compound that is highly activein vitroagainst the chloroquine-sensitive D6, the chloroquine-resistant W2, and the multidrug-resistant TM90-C2BPlasmodium falciparumlines, with 50% inhibitory concentrations (IC50s) ranging from 7 nM to 34 nM. JPC-2997 is >2,500 times less cytotoxic (IC50s > 35 μM) to human (HepG2 and HEK293) and rodent (BHK) cell lines than the D6 parasite line. In comparison to the chemically related WR-194,965, a drug that had advanced to clinical studies, JPC-2997 was 2-fold more activein vitroagainstP. falciparumlines and 3-fold less cytotoxic. The compound possesses potentin vivosuppression activity againstPlasmodium berghei, with a 50% effective dose (ED50) of 0.5 mg/kg of body weight/day following oral dosing in the Peters 4-day test. The radical curative dose of JPC-2997 was remarkably low, at a total dose of 24 mg/kg, using the modified Thompson test. JPC-2997 was effective in curing threeAotusmonkeys infected with a chloroquine- and pyrimethamine-resistant strain ofPlasmodium vivaxat a dose of 20 mg/kg daily for 3 days. At the doses administered, JPC-2997 appeared to be well tolerated in mice and monkeys. Preliminary studies of JPC-2997 in mice show linear pharmacokinetics over the range 2.5 to 40 mg/kg, a low clearance of 0.22 liters/h/kg, a volume of distribution of 15.6 liters/kg, and an elimination half-life of 49.8 h. The highin vivopotency data and lengthy elimination half-life of JPC-2997 suggest that it is worthy of further preclinical assessment as a partner drug.


Sign in / Sign up

Export Citation Format

Share Document