scholarly journals Assessment of the Environmental Fate of the Biological Control Agent of Fire Blight, Pseudomonas fluorescens EPS62e, on Apple by Culture and Real-Time PCR Methods

2006 ◽  
Vol 72 (4) ◽  
pp. 2421-2427 ◽  
Author(s):  
Marta Pujol ◽  
Esther Badosa ◽  
Charles Manceau ◽  
Emilio Montesinos

ABSTRACT The colonization of apple blossoms and leaves by Pseudomonas fluorescens EPS62e was monitored in greenhouse and field trials using cultivable cell counting and real-time PCR. The real-time PCR provided a specific quantitative method for the detection of strain EPS62e. The detection level was around 102 cells g (fresh weight)−1 and the standard curve was linear within a 5-log range. EPS62e actively colonized flowers reaching values from 107 to 108 cells per blossom. In apple flowers, no significant differences were observed between population levels obtained by real-time PCR and plating, suggesting that viable but nonculturable (VBNC) cells and residual nondegraded DNA were not present. In contrast, on apple leaves, where cultivable populations of EPS62e decreased with time, significant differences were observed between real-time PCR and plating. These differences indicate the presence of VBNC cells or nondegraded DNA after cell death. Therefore, the EPS62e population was under optimal conditions during the colonization of flowers but it was stressed and poorly survived on leaves. It was concluded that for monitoring this biological control agent, the combined use of cultivable cell count and real-time PCR is necessary.

2003 ◽  
Vol 69 (8) ◽  
pp. 4788-4793 ◽  
Author(s):  
S. D. Atkins ◽  
I. M. Clark ◽  
D. Sosnowska ◽  
P. R. Hirsch ◽  
B. R. Kerry

ABSTRACT Potato cyst nematodes (PCN) are serious pests in commercial potato production, causing yield losses valued at approximately $300 million in the European Community. The nematophagous fungus Plectosphaerella cucumerina has demonstrated its potential as a biological control agent against PCN populations by reducing field populations by up to 60% in trials. The use of biological control agents in the field requires the development of specific techniques to monitor the release, population size, spread or decline, and pathogenicity against its host. A range of methods have therefore been developed to monitor P. cucumerina. A species-specific PCR primer set (PcCF1-PcCR1) was designed that was able to detect the presence of P. cucumerina in soil, root, and nematode samples. PCR was combined with a bait method to identify P. cucumerina from infected nematode eggs, confirming the parasitic ability of the fungus. A selective medium was adapted to isolate the fungus from root and soil samples and was used to quantify the fungus from field sites. A second P. cucumerina-specific primer set (PcRTF1-PcRTR1) and a Taqman probe (PcRTP1) were designed for real-time PCR quantification of the fungus and provided a very sensitive means of detecting the fungus from soil. PCR, bait, and culture methods were combined to investigate the presence and abundance of P. cucumerina from two field sites in the United Kingdom where PCN populations were naturally declining. All methods enabled differences in the activity of P. cucumerina to be detected, and the results demonstrated the importance of using a combination of methods to investigate population size and activity of fungi.


2011 ◽  
Vol 322 (1) ◽  
pp. 34-40 ◽  
Author(s):  
Veronique Edel-Hermann ◽  
Sébastien Aimé ◽  
Christelle Cordier ◽  
Chantal Olivain ◽  
Christian Steinberg ◽  
...  

Plant Disease ◽  
2021 ◽  
Author(s):  
Leslie Amanda Holland ◽  
Renaud Travadon ◽  
Daniel P. Lawrence ◽  
Mohamed Taieb Nouri ◽  
Florent P Trouillas

Almond trunk and branch canker diseases constitute a major cause of tree mortality in California. Numerous fungal pathogens have been associated with these canker diseases and pruning wounds act as major infection courts. Prior to this study, there were no products registered in California for the management of these diseases. In this study, fungicidal products including synthetic chemistries, biocontrols, paint and a sealant were evaluated for preventing fungal pathogen infection via pruning wounds. In four field trials conducted over two dormant seasons, sixteen pruning wound treatments were tested using hand-held spray applications, against five almond canker pathogens, namely Botryosphaeria dothidea, Neofusicoccum parvum, Cytospora sorbicola, Ceratocystis destructans, and Eutypa lata. The fungicide thiophanate-methyl (Topsin M) provided 82% overall disease prevention against four fungal pathogens. The biological control agent, Trichoderma atroviride SC1 (Vintec), tested at three application rates, resulted in 90 to 93% protection of pruning wounds in field trials, and for individual pathogens ranged from 81-100% protection for the three rates. At the time of this publication, Vintec is being considered for registration as a biological control product for the prevention of almond canker diseases, while Topsin M is recommended to growers for the prevention of almond canker diseases. This research indicates that effective protection of pruning wounds from infection by almond canker pathogens can be achieved with a one-time spray application of thiophanate-methyl or the biocontrol, T. atroviride SC1 (recommended 2 g/liter) after pruning.


2011 ◽  
Vol 101 (1) ◽  
pp. 113-123 ◽  
Author(s):  
V. O. Stockwell ◽  
K. B. Johnson ◽  
D. Sugar ◽  
J. E. Loper

Mixtures of biological control agents can be superior to individual agents in suppressing plant disease, providing enhanced efficacy and reliability from field to field relative to single biocontrol strains. Nonetheless, the efficacy of combinations of Pseudomonas fluorescens A506, a commercial biological control agent for fire blight of pear, and Pantoea vagans strain C9-1 or Pantoea agglomerans strain Eh252 rarely exceeds that of individual strains. A506 suppresses growth of the pathogen on floral colonization and infection sites through preemptive exclusion. C9-1 and Eh252 produce peptide antibiotics that contribute to disease control. In culture, A506 produces an extracellular protease that degrades the peptide antibiotics of C9-1 and Eh252. We hypothesized that strain A506 diminishes the biological control activity of C9-1 and Eh252, thereby reducing the efficacy of biocontrol mixtures. This hypothesis was tested in five replicated field trials comparing biological control of fire blight using strain A506 and A506 aprX::Tn5, an extracellular protease-deficient mutant, as individuals and combined with C9-1 or Eh252. On average, mixtures containing A506 aprX::Tn5 were superior to those containing the wild-type strain, confirming that the extracellular protease of A506 diminished the biological control activity of C9-1 and Eh252 in situ. Mixtures of A506 aprX::Tn5 and C9-1 or Eh252 were superior to oxytetracycline or single biocontrol strains in suppressing fire blight of pear. These experiments demonstrate that certain biological control agents are mechanistically incompatible, in that one strain interferes with the mechanism by which a second strain suppresses plant disease. Mixtures composed of mechanistically compatible strains of biological control agents can suppress disease more effectively than individual biological control agents.


2016 ◽  
Vol 69 ◽  
pp. 258-262
Author(s):  
B. Smith ◽  
S.G. Casonato ◽  
A. Noble ◽  
G. Bourd?t

Californian thistle (Cirsium arvense) is a problematic weed particularly in permanent pastures The fungus Sclerotinia sclerotiorum has potential as a bioherbicide to control this weed but its variable efficacy in historical field trials suggest that there are differences in susceptibility to S sclerotiorum within the species To test this hypothesis the responses of 32 New Zealand provenances of C arvense to a foliageapplied myceliumonbarley preparation of S sclerotiorum were compared under common conditions Significant differences between provenances were found supporting the hypothesis that there is variation within C arvense in New Zealand in its susceptibility to S sclerotiorum Further work will examine differences in the efficacy of fungal isolates against different C arvense provenances


2021 ◽  
Vol 11 (20) ◽  
pp. 9445
Author(s):  
Maria Zottele ◽  
Johanna Mayerhofer ◽  
Hannah Embleton ◽  
Katharina Wechselberger ◽  
Jürg Enkerli ◽  
...  

Inundative mass application of Metarhizium brunneum BIPESCO 5 (Hypocreales, Clavicipitaceae) is used for the biological control of Diabrotica v. virgifera (Coleoptera, Chrysomelidae). Long-term field trials were performed in three Austrian maize fields—with different cultivation techniques and infestation rates—in order to evaluate the efficacy of the treatment to control the pest larvae. In addition, the indigenous Metarhizium spp. population structure was assessed to compare the different field sites with BIPESCO 5 mass application. Annual application of the product Granmet-PTM (Metarhizium colonized barley kernels) significantly increased the density of Metarhizium spp. in the treated soil above the upper natural background level of 1000 colony forming units per gram dry weight soil. Although a decrease in the pest population over time was not achieved in heavily infested areas, less damage occurred in treated field sites in comparison to control sites. The Metarhizium population structure was significantly different between the treated field sites. Results showed that inundative mass application should be repeated regularly to achieve good persistence of the biological control agent, and indicated that despite intensive applications, indigenous populations of Metarhizium spp. can coexist in these habitats. To date, crop rotation remains the method of choice for pest reduction in Europe, however continuous and preventive application of M. brunneum may also present an alternative for the successful biological control of Diabrotica.


Sign in / Sign up

Export Citation Format

Share Document