scholarly journals Culture of Protozoan Parasites

2002 ◽  
Vol 15 (3) ◽  
pp. 327-328 ◽  
Author(s):  
Govinda S. Visvesvara ◽  
Lynne S. Garcia

SUMMARY The in vitro culture of protozoan parasites involves highly complex procedures, which are subject to many variables. These parasites have very complex life cycles and, depending on the life cycle stage, may require different culture parameters. However, in vitro cultivation is important for many reasons, some of which include: diagnosis, antigen and antibody production, assessment of parasite immune modulating capabilities, drug screening, improvements in chemotherapy, differentiation of clinical isolates, determination of strain differences, vaccine production, development of attenuated strains, and the continued supply of viable organisms for studying host-parasite interactions.

2021 ◽  
Vol 15 (8) ◽  
pp. e0009668
Author(s):  
Smita Sutrave ◽  
Martin Heinrich Richter

Protozoan parasites are responsible for severe disease and suffering in humans worldwide. Apart from disease transmission via insect vectors and contaminated soil, food, or water, transmission may occur congenitally or by way of blood transfusion and organ transplantation. Several recent outbreaks associated with fresh produce and potable water emphasize the need for vigilance and monitoring of protozoan parasites that cause severe disease in humans globally. Apart from the tropical parasite Plasmodium spp., other protozoa causing debilitating and fatal diseases such as Trypanosoma spp. and Naegleria fowleri need to be studied in more detail. Climate change and socioeconomic issues such as migration continue to be major drivers for the spread of these neglected tropical diseases beyond endemic zones. Due to the complex life cycles of protozoa involving multiple hosts, vectors, and stringent growth conditions, studying these parasites has been challenging. While in vivo models may provide insights into host–parasite interaction, the ethical aspects of laboratory animal use and the challenge of ready availability of parasite life stages underline the need for in vitro models as valid alternatives for culturing and maintaining protozoan parasites. To our knowledge, this review is the first of its kind to highlight available in vitro models for protozoa causing highly infectious diseases. In recent years, several research efforts using new technologies such as 3D organoid and spheroid systems for protozoan parasites have been introduced that provide valuable tools to advance complex culturing models and offer new opportunities toward the advancement of parasite in vitro studies. In vitro models aid scientists and healthcare providers in gaining insights into parasite infection biology, ultimately enabling the use of novel strategies for preventing and treating these diseases.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Sasha V. Siegel ◽  
Lia Chappell ◽  
Jessica B. Hostetler ◽  
Chanaki Amaratunga ◽  
Seila Suon ◽  
...  

Abstract Plasmodium vivax gene regulation remains difficult to study due to the lack of a robust in vitro culture method, low parasite densities in peripheral circulation and asynchronous parasite development. We adapted an RNA-seq protocol “DAFT-seq” to sequence the transcriptome of four P. vivax field isolates that were cultured for a short period ex vivo before using a density gradient for schizont enrichment. Transcription was detected from 78% of the PvP01 reference genome, despite being schizont-enriched samples. This extensive data was used to define thousands of 5′ and 3′ untranslated regions, some of which overlapped with neighbouring transcripts, and to improve the gene models of 352 genes, including identifying 20 novel gene transcripts. This dataset has also significantly increased the known amount of heterogeneity between P. vivax schizont transcriptomes from individual patients. The majority of genes found to be differentially expressed between the isolates lack Plasmodium falciparum homologs and are predicted to be involved in host-parasite interactions, with an enrichment in reticulocyte binding proteins, merozoite surface proteins and exported proteins with unknown function. An improved understanding of the diversity within P. vivax transcriptomes will be essential for the prioritisation of novel vaccine targets.


Parasitology ◽  
2009 ◽  
Vol 137 (3) ◽  
pp. 411-424 ◽  
Author(s):  
I. BARBER ◽  
J. P. SCHARSACK

SUMMARYPlerocercoids of the pseudophyllidean cestodeSchistocephalus solidusinfect the three-spined sticklebackGasterosteus aculeatus, with important consequences for the biology of host fish. Techniques for culturing the parasitein vitroand generating infective stages that can be used to infect sticklebacks experimentally have been developed, and the system is increasingly used as a laboratory model for investigating aspects of host-parasite interactions. Recent experimental laboratory studies have focused on the immune responses of hosts to infection, the consequences of infection for the growth and reproductive development of host fish and the effects of infection on host behaviour. Here we introduce the host and the parasite, review the major findings of these recent experimental infection studies and identify further aspects of host parasite interactions that might be investigated using the system.


1964 ◽  
Vol 42 (10) ◽  
pp. 1365-1386 ◽  
Author(s):  
Ruth L. Lowther

Some host–parasite interactions of the C. fulvum – tomato leaf complex have been correlated with degrees of utilization in vitro by races of the pathogen of metabolites which have been shown to occur in different amounts in some tomato hosts which react differentially to them. Similarities and differences in the behavior of three pathogenic races were noted when the plants were grown in a number of amino nitrogen and sugar carbon sources. Similarities are interpreted as representing species characteristics; on the other hand, differences, including colony colors in glutamine and γ-aminobutyric acid, appear to be racial characteristics. Further evidence suggesting that certain host metabolites modify or condition the pathogenic expression was obtained from studies of the effect on pathogenicity of culture media differing in amino nitrogen content. From a comparison of the metabolites of host–pathogen complexes of differing reaction types, some insight was gained into probable nutritional requirements for a race 1 susceptible response. Conversely, where these differed in other reaction-type complexes, clues were obtained regarding possible reasons for resistance to this race.


2019 ◽  
Author(s):  
Matías Exequiel Rodríguez ◽  
Mariana Rizzi ◽  
Lucas D. Caeiro ◽  
Yamil E. Masip ◽  
Alina Perrone ◽  
...  

AbstractChaga’ disease, caused by the kinetoplastid parasite Trypanosoma cruzi, presents a variety of chronic clinical manifestations whose determinants are still unknown but probably influenced by the host-parasite interplay established during the first stages of the infection, when bloodstream circulating trypomastigotes disseminate to different organs and tissues. After leaving the blood, trypomastigotes must migrate through tissues to invade cells and establish a chronic infection. How this process occurs remains unexplored. Three-dimensional (3D) cultures are physiologically relevant because mimic the microarchitecture of tissues and provide an environment similar to the encountered in natural infections. In this work, we combined the 3D culture technology with host-pathogen interaction, by studying transmigration of trypomastigotes into 3D spheroids. T. cruzi strains with similar infection dynamics in 2D monolayer cultures but with different in vivo behavior (CL Brener, virulent; SylvioX10 no virulent) presented different infection rates in spheroids (CL Brener ∼40%, SylvioX10 <10%). Confocal microscopy images evidenced that trypomastigotes from CL Brener and other highly virulent strains presented a great ability to transmigrate inside 3D spheroids: as soon as 4 hours post infection parasites were found at 50 µm in depth inside the spheroids. CL Brener trypomastigotes were evenly distributed and systematically observed in the space between cells, suggesting a paracellular route of transmigration to deepen into the spheroids. On the other hand, poor virulent strains presented a weak migratory capacity and remained in the external layers of spheroids (<10µm) with a patch-like distribution pattern. The invasiveness -understood as the ability to transmigrate deep into spheroids- was not a transferable feature between strains, neither by soluble or secreted factors nor by co-cultivation of trypomastigotes from invasive and non-invasive strains. We also studied the transmigration of recent T. cruzi isolates from children that were born congenitally infected, which showed a high migrant phenotype while an isolate form an infected mother (that never transmitted the infection to any of her 3 children) was significantly less migratory. Altogether, our results demonstrate that in a 3D microenvironment each strain presents a characteristic migration pattern and distribution of parasites in the spheroids that can be associated to their in vivo behavior. Certainly, the findings presented here could not have been studied with traditional 2D monolayer cultures.Author SummaryTrypanosoma cruzi is the protozoan parasite that causes Chaga’ disease, also known as American trypanosomiasis. Experimental models of the infection evidence that different strains of the parasite present different virulence in the host, which cannot be always reproduced in 2D monolayer cultures. Three dimensional (3D) cultures can be useful models to study complex host-parasite interactions because they mimic in vitro the microarchitecture of tissues and provide an environment similar to the encountered in natural infections. In particular, spheroids are small 3D aggregates of cells that interact with each other and with the extracellular matrix that they secrete resembling the original microenvironment both functionally and structurally. Spheroids have rarely been employed to explore infectious diseases and host-parasite interactions. In this work we studied how bloodstream trypomastigotes transmigrate through 3D spheroids mimicking the picture encountered by parasites in tissues soon after leaving circulation. We showed that the behavior of T. cruzi trypomastigotes in 3D cultures reflects their in vivo virulence: virulent strains transmigrate deeply into spheroids while non-virulent strains remain in the external layers of spheroids. Besides, this work demonstrates the usefulness of 3D cultures as an accurate in vitro model for the study of host-pathogen interactions that could not be addressed with conventional monolayer cultures.


2009 ◽  
Vol 9 (1) ◽  
pp. 280 ◽  
Author(s):  
Bernhard Guggenheim ◽  
Rudolf Gmür ◽  
Johnah C Galicia ◽  
Panagiota G Stathopoulou ◽  
Manjunatha R Benakanakere ◽  
...  

Parasitology ◽  
2017 ◽  
Vol 145 (3) ◽  
pp. 260-268 ◽  
Author(s):  
YANN BAILLY ◽  
FRANK CÉZILLY ◽  
THIERRY RIGAUD

SUMMARYMultidimensionality in parasite-induced phenotypic alterations (PIPA) has been observed in a large number of host–parasite associations, particularly in parasites with complex life cycles. However, it is still unclear whether such a syndrome is due to the successive activation of independent PIPAs, or results from the synchronous disruption of a single mechanism. The aim of the present study was to investigate the onset and progression of two PIPAs (a behavioural alteration: reversion of geotaxis, and castration) occurring in the crustacean amphipod Gammarus pulex infected with the acanthocephalan Polymorphus minutus, at different parasite developmental stages. Modifications of geotaxis in hosts differed according to the parasite developmental stage. Whereas the cystacanth stage induced a negative geotaxis (exposing the gammarid to predation by birds, the definitive hosts), the acanthella stage, not yet infective for the definitive host, induced a stronger positive geotaxis (presumably protecting gammarids from bird predation). In contrast, castration was almost total at the acanthella stage, with no significant variation in the intensity according to parasite maturation. Finally, no significant correlation was found between the intensity of behavioural changes and the intensity of castration. We discuss our results in relation with current views on the evolution of multidimensionality in PIPA.


Sign in / Sign up

Export Citation Format

Share Document