scholarly journals An Intranasally Delivered Toll-Like Receptor 7 Agonist Elicits Robust Systemic and Mucosal Responses to Norwalk Virus-Like Particles

2010 ◽  
Vol 17 (12) ◽  
pp. 1850-1858 ◽  
Author(s):  
Lissette S. Velasquez ◽  
Brooke E. Hjelm ◽  
Charles J. Arntzen ◽  
Melissa M. Herbst-Kralovetz

ABSTRACT Norwalk virus (NV) is an enteric pathogen from the genus Norovirus and a major cause of nonbacterial gastroenteritis in humans. NV virus-like particles (VLPs) are known to elicit systemic and mucosal immune responses when delivered nasally; however, the correlates of immune protection are unknown, and codelivery with a safe and immunogenic mucosal adjuvant may enhance protective anti-NV immune responses. Resiquimod (R848), an imidazoquinoline-based Toll-like receptor 7 and/or 8 (TLR7/8) agonist, is being evaluated as an adjuvant in FDA-approved clinical vaccine trials. As such, we evaluated the adjuvant activity of two imidazoquinoline-based TLR7 and TLR7/8 agonists when codelivered intranasally with plant-derived NV VLPs. We also compared the activity of these agonists to the gold standard mucosal adjuvant, cholera toxin (CT). Our results indicate that codelivery with the TLR7 agonist, gardiquimod (GARD), induces NV VLP-specific serum IgG and IgG isotype responses and mucosal IgA responses in the gastrointestinal, respiratory, and reproductive tracts that are superior to those induced by R848 and comparable to those induced by the mucosal adjuvant CT. This study supports the continued investigation of GARD as a mucosal adjuvant for NV VLPs and possible use for other VLP-based vaccines for which immune responses at distal mucosal sites (e.g., respiratory and reproductive tracts) are desired.

2001 ◽  
Vol 75 (20) ◽  
pp. 9713-9722 ◽  
Author(s):  
Roberto A. Guerrero ◽  
Judith M. Ball ◽  
Sharon S. Krater ◽  
Susan E. Pacheco ◽  
John D. Clements ◽  
...  

ABSTRACT Recombinant Norwalk virus-like particles (rNV VLPs) were administered to BALB/c mice by the intranasal (i.n.) route to evaluate the induction of mucosal antibody responses. The results were compared to systemic and mucosal responses observed in new and previous studies (J. M. Ball, M. E. Hardy, R. L. Atmar, M. E. Connor, and M. K. Estes, J. Virol. 72:1345–1353, 1998) after oral administration of rNV VLPs. Immunizations were given in the presence or absence of a mucosal adjuvant, mutant Escherichia coliheat-labile toxin LT(R192G). rNV-specific immunoglobulin G (IgG) and fecal IgA were evaluated by enzyme-linked immunosorbent assay. The i.n. delivery of rNV VLPs was more effective than the oral route at inducing serum IgG and fecal IgA responses to low doses of rNV particles. Vaginal responses of female mice given VLPs by the i.n. and oral routes were also examined. All mice that received two immunizations with low doses i.n. (10 or 25 μg) of rNV VLPs and the majority of mice that received two high doses orally (200 μg) in the absence of adjuvant had rNV-specific serum IgG, fecal, and vaginal responses. Additional experiments evaluated whether rNV VLPs can function as a mucosal adjuvant by evaluating the immune responses to two soluble proteins, keyhole limpet hemocyanin and chicken egg albumin. Under the conditions tested, rNV VLPs did not enhance the serum IgG or fecal IgA response to these soluble proteins when coadministered by the i.n. or oral route. Low doses of nonreplicating rNV VLPs are immunogenic when administered i.n. in the absence of adjuvant, and addition of adjuvant enhanced the magnitude and duration of these responses. Recombinant NV VLPs represent a candidate mucosal vaccine for NV infections in humans.


1998 ◽  
Vol 72 (2) ◽  
pp. 1345-1353 ◽  
Author(s):  
Judith M. Ball ◽  
Michele E. Hardy ◽  
Robert L. Atmar ◽  
Margaret E. Conner ◽  
Mary K. Estes

ABSTRACT Recombinant Norwalk virus-like particles (rNV VLPs) produced in insect cells were evaluated as an oral immunogen in CD1 and BALB/c mice by monitoring rNV-specific serum total and subclass immunoglobulin G (IgG) and intestinal IgA responses. Dose and kinetics of response were evaluated in the presence and absence of the mucosal adjuvant cholera toxin (CT). rNV-specific serum IgG and intestinal IgA were detected in the absence of CT, and the number of responders was not significantly different from that of mice administered VLPs with CT at most doses. The use of CT was associated with induction of higher levels of IgG in serum; this effect was greater at higher doses of VLPs. IgG in serum was detected in the majority of animals by 9 days postimmunization (dpi), and intestinal IgA responses were detected by 24 dpi. In the absence of CT, IgG2b was the dominant IgG subclass response in both mouse strains. Thus, nonreplicating rNV VLPs are immunogenic when administered orally in the absence of any delivery system or mucosal adjuvant. These studies demonstrate that rNV VLPs are an excellent model to study the oral delivery of antigen, and they are a potential mucosal vaccine for NV infections.


Blood ◽  
2010 ◽  
Vol 115 (10) ◽  
pp. 1949-1957 ◽  
Author(s):  
Deepa Rajagopal ◽  
Carine Paturel ◽  
Yannis Morel ◽  
Satoshi Uematsu ◽  
Shizuo Akira ◽  
...  

Abstract There is a high demand for the development of adjuvants that induce cytotoxic T lymphocytes, which are crucial for the elimination of intracellular pathogens and tumor cells. Toll-like receptor (TLR) agonists are prime candidates to fulfill this role because they induce innate immune activation and promote adaptive immune responses. The successful application of the TLR7 agonist R837 for treatment of basal cell carcinoma shows the potential for exploiting this pathway in tumor immunotherapy. Imidazoquinolines like R837 and stimulatory ssRNA oligonucleotides both trigger TLR7-mediated immune activation, but little is known about their comparative ability to promote immunity induction. We investigated differences in innate immune activation and adjuvant activity between the imidazoquinoline R848 and the ssRNA TLR7 agonist polyUs21. In contrast to R848, polyUs21 induced detectable levels of intracellular interferon-α (IFN-α) in plasmacytoid dendritic cells (PDCs). In immunization studies, only polyUs21 led to robust priming of type 1 T helper cells and cytotoxic T lymphocytes, and it was more efficient in inducing antitumor immunity than R848. Notably, exogenous IFN-α augmented the adjuvant activity of R848, whereas depletion of PDC abrogated the adjuvanticity of polyUs21. This study, therefore, identifies sufficient IFN-α production by PDC as an important determinant of vaccine efficacy.


2003 ◽  
Vol 71 (4) ◽  
pp. 1897-1902 ◽  
Author(s):  
Mariarosaria Marinaro ◽  
Alessio Fasano ◽  
Maria Teresa De Magistris

ABSTRACT Zonula occludens toxin (Zot) is produced by Vibrio cholerae and has the ability to increase mucosal permeability by reversibly affecting the structure of tight junctions. Because of this property, Zot is a promising tool for mucosal drug and antigen (Ag) delivery. Here we show that Zot acts as a mucosal adjuvant to induce long-lasting and protective immune responses upon mucosal immunization of mice. Indeed, the intranasal delivery of ovalbumin with two different recombinant forms of Zot in BALB/c mice resulted in high Ag-specific serum immunoglobulin G titers that were maintained over the course of a year. Moreover, His-Zot induced humoral and cell-mediated responses to tetanus toxoid in C57BL/6 mice and protected the mice against a systemic challenge with tetanus toxin. In addition, we found that Zot also acts as an adjuvant through the intrarectal route and that it has very low immunogenicity compared to the adjuvant Escherichia coli heat-labile enterotoxin. Finally, by using an octapeptide representing the putative binding site of Zot and of its endogenous analogue zonulin, we provide evidence that Zot may bind a mucosal receptor on nasal mucosa and may mimic an endogenous regulator of tight junctions to deliver Ags in the submucosa. In conclusion, Zot is a novel and effective mucosal adjuvant that may be useful for the development of mucosal vaccines.


2006 ◽  
Vol 74 (1) ◽  
pp. 694-702 ◽  
Author(s):  
Shee Eun Lee ◽  
Soo Young Kim ◽  
Byung Chul Jeong ◽  
Young Ran Kim ◽  
Soo Jang Bae ◽  
...  

ABSTRACT Flagellin, the structural component of flagellar filament in various locomotive bacteria, is the ligand for Toll-like receptor 5 (TLR5) of host cells. TLR stimulation by various pathogen-associated molecular patterns leads to activation of innate and subsequent adaptive immune responses. Therefore, TLR ligands are considered attractive adjuvant candidates in vaccine development. In this study, we show the highly potent mucosal adjuvant activity of a Vibrio vulnificus major flagellin (FlaB). Using an intranasal immunization mouse model, we observed that coadministration of the flagellin with tetanus toxoid (TT) induced significantly enhanced TT-specific immunoglobulin A (IgA) responses in both mucosal and systemic compartments and IgG responses in the systemic compartment. The mice immunized with TT plus FlaB were completely protected from systemic challenge with a 200× minimum lethal dose of tetanus toxin. Radiolabeled FlaB administered into the nasal cavity readily reached the cervical lymph nodes and systemic circulation. FlaB bound directly to human TLR5 expressed on cultured epithelial cells and consequently induced NF-κB and interleukin-8 activation. Intranasally administered FlaB colocalized with CD11c as patches in putative dendritic cells and caused an increase in the number of TLR5-expressing cells in cervical lymph nodes. These results indicate that flagellin would serve as an efficacious mucosal adjuvant inducing protective immune responses through TLR5 activation.


1999 ◽  
Vol 67 (3) ◽  
pp. 1287-1291 ◽  
Author(s):  
Mariarosaria Marinaro ◽  
Annalisa di Tommaso ◽  
Sergio Uzzau ◽  
Alessio Fasano ◽  
Maria Teresa de Magistris

ABSTRACT Zonula occludens toxin (Zot) is produced by toxigenic strains ofVibrio cholerae and has the ability to reversibly alter intestinal epithelial tight junctions, allowing the passage of macromolecules through the mucosal barrier. In the present study, we investigated whether Zot could be exploited to deliver soluble antigens through the nasal mucosa for the induction of antigen-specific systemic and mucosal immune responses. Intranasal immunization of mice with ovalbumin (Ova) and recombinant Zot, either fused to the maltose-binding protein (MBP-Zot) or with a hexahistidine tag (His-Zot), induced anti-Ova serum immunoglobulin G (IgG) titers that were approximately 40-fold higher than those induced by immunization with antigen alone. Interestingly, Zot also stimulated high anti-Ova IgA titers in serum, as well as in vaginal and intestinal secretions. A comparison with Escherichia coli heat-labile enterotoxin (LT) revealed that the adjuvant activity of Zot was only sevenfold lower than that of LT. Moreover, Zot and LT induced similar patterns of Ova-specific IgG subclasses. The subtypes IgG1, IgG2a, and IgG2b were all stimulated, with a predominance of IgG1 and IgG2b. In conclusion, our results highlight Zot as a novel potent mucosal adjuvant of microbial origin.


2003 ◽  
Vol 108 (3) ◽  
pp. 241-247 ◽  
Author(s):  
Carol O Tacket ◽  
Marcelo B Sztein ◽  
Genevieve A Losonsky ◽  
Steven S Wasserman ◽  
Mary K Estes

2002 ◽  
Vol 76 (2) ◽  
pp. 730-742 ◽  
Author(s):  
Patrick R. Harrington ◽  
Boyd Yount ◽  
Robert E. Johnston ◽  
Nancy Davis ◽  
Christine Moe ◽  
...  

ABSTRACT Norwalk-like viruses (NLVs) are a diverse group of single-stranded, nonenveloped, positive-polarity RNA viruses and are the leading cause of epidemic acute gastroenteritis in the United States. In this study, the major capsid gene of Norwalk virus, the prototype NLV, has been cloned and expressed in mammalian cells using a Venezuelan equine encephalitis (VEE) replicon expression system. Upon infection of baby hamster kidney (BHK) cells with VEE replicon particles (VRPs), the Norwalk virus capsid proteins self-assemble to generate high titers of Norwalk virus-like particles (VLPs) that are morphologically and antigenically analogous to wild-type Norwalk virus. Mice inoculated subcutaneously with VRPs expressing the Norwalk virus capsid protein (VRP-NV1) developed systemic and mucosal immune responses to Norwalk VLPs, as well as heterotypic antibody responses to the major capsid protein from another genogroup I NLV strain (NCFL) isolated from a recent outbreak. A second Norwalk virus capsid clone (NV2) containing three amino acid codon mutations from the NV1 clone was also expressed using VEE replicons (VRP-NV2), but upon infection of BHK cells failed to confer VLP self-assembly. Mice inoculated with VRP-NV2 elicited reduced systemic and mucosal immune responses to Norwalk VLPs, demonstrating the importance and potential utility of endogenous VLP presentation for maximum immune induction. Inoculation with either VRP-NV1 or VRP-NV2 resulted in serum antibody responses far superior to the induction in mice dosed orally with VLPs that were prepared using the VEE-NV1 replicon construct, a regimen similar to current models for NLV vaccination. Expression of NLV VLPs in mammalian cells offers a powerful approach for the design of novel NLV vaccines, either alone or in combination with current vaccination models.


Vaccine ◽  
2015 ◽  
Vol 33 (29) ◽  
pp. 3331-3341 ◽  
Author(s):  
Delphine Fougeron ◽  
Laurye Van Maele ◽  
Pascal Songhet ◽  
Delphine Cayet ◽  
David Hot ◽  
...  

Author(s):  
Meysam SHOKRI ◽  
Khosro HAZRATI TAPPEH ◽  
Elyar MESHKINI ◽  
Arash AMINPOUR

Background: In this study, the effect of total lysate antigen (TLA) of Toxoplasma gondii on spleen lymphocyte prolifration, secretion of IL5, INF-γ, and mice survival time was evaluated using agonist of toll-like receptor (TLR) 11, as an adjuvant. Results: Mice immunized with TLA + adjuvant showed higher immunization index than the two other groups and combination of TLR11 (as an adjuvant) and TLA significantly elevated the effect of TLA by increasing the production of INF-γ and IL-5 and by the shift of the immune system to Th1. In addition, the combination of TLA and TLR11 adjuvant increased the proliferation of lymphocytes and survival time in mice against T. gondii. Conclusion: Profilin (as an adjuvant) in combination with TLA could be a potent vaccine candidate that evokes a powerful specific immune response and significantly improves the efficacy of TLA vaccine by increasing the induction of INF-γ production and by shifting the immune responses to Th1 profile through increasing the INF-γ/IL-5 ratio. It causes significant protection against T. gondii after i.p. injection.


Sign in / Sign up

Export Citation Format

Share Document