scholarly journals Genetic, Biochemical, and Serological Characterization of a New Pneumococcal Serotype, 6H, and Generation of a Pneumococcal Strain Producing Three Different Capsular Repeat Units

2015 ◽  
Vol 22 (3) ◽  
pp. 313-318 ◽  
Author(s):  
In Ho Park ◽  
K. Aaron Geno ◽  
Jigui Yu ◽  
Melissa B. Oliver ◽  
Kyung-Hyo Kim ◽  
...  

ABSTRACTStreptococcus pneumoniaeclinical isolates were recently described that produced capsular polysaccharide with properties of both serotypes 6A and 6B. Their hybrid serological property correlated with mutations affecting the glycosyltransferase WciP, which links rhamnose to ribitol by an α(1-3) linkage for serotypes 6A and 6C and an α(1-4) linkage for serotypes 6B and 6D. The isolates had mutations in the triad residues of WciP that have been correlated with enzyme specificity. The canonical triad residues of WciP are Ala192-Ser195-Arg254 for serotypes 6A and 6C and Ser192-Asn195-Gly254 for serotypes 6B and 6D. To prove that the mutations in the triad residues are responsible for the hybrid serotype, we introduced the previously described Ala192-Cys195-Arg254 triad into a 6A strain and found that the change made WciP bispecific, resulting in 6A and 6B repeat unit expression, although 6B repeat unit production was favored over production of 6A repeat units. Likewise, this triad permitted a 6C strain to express 6C and 6D repeat units. With reported bispecificity in WciN, which adds either glucose or galactose as the second sugar in the serogroup 6 repeat unit, the possibility exists for a strain to simultaneously produce all four serogroup 6 repeat units; however, when genes encoding both bispecific enzymes were introduced into a 6A strain, only 6A, 6B, and 6D repeat units were detected serologically. Nonetheless, this may be the first example of a bacterial polysaccharide with three different repeat units. This strategy of expressing multiple repeat units in a single polymer is a novel approach to broadening vaccine coverage by eliminating the need for multiple polysaccharide sources to cover multiple serogroup members.

2007 ◽  
Vol 189 (21) ◽  
pp. 7856-7876 ◽  
Author(s):  
David M. Aanensen ◽  
Angeliki Mavroidi ◽  
Stephen D. Bentley ◽  
Peter R. Reeves ◽  
Brian G. Spratt

ABSTRACT The sequences of the capsular biosynthetic (cps) loci of 90 serotypes of Streptococcus pneumoniae have recently been determined. Bioinformatic procedures were used to predict the general functions of 1,973 of the 1,999 gene products and to identify proteins within the same homology group, Pfam family, and CAZy glycosyltransferase family. Correlating cps gene content with the 54 known capsular polysaccharide (CPS) structures provided tentative assignments of the specific functions of the different homology groups of each functional class (regulatory proteins, enzymes for synthesis of CPS constituents, polymerases, flippases, initial sugar transferases, glycosyltransferases [GTs], phosphotransferases, acetyltransferases, and pyruvyltransferases). Assignment of the glycosidic linkages catalyzed by the 342 GTs (92 homology groups) is problematic, but tentative assignments could be made by using this large set of cps loci and CPS structures to correlate the presence of particular GTs with specific glycosidic linkages, by correlating inverting or retaining linkages in CPS repeat units with the inverting or retaining mechanisms of the GTs predicted from their CAZy family membership, and by comparing the CPS structures of serotypes that have very similar cps gene contents. These large-scale comparisons between structure and gene content assigned the linkages catalyzed by 72% of the GTs, and all linkages were assigned in 32 of the serotypes with known repeat unit structures. Clear examples where very similar initial sugar transferases or glycosyltransferases catalyze different linkages in different serotypes were also identified. These assignments should provide a stimulus for biochemical studies to evaluate the reactions that are proposed.


1999 ◽  
Vol 122 (2) ◽  
pp. 241-249 ◽  
Author(s):  
N. KOBAYASHI ◽  
S. URASAWA ◽  
N. UEHARA ◽  
N. WATANABE

Protein A of Staphylococcus aureus contains a polymorphic Xr-region characterized by a tandem repeat of eight amino acid units. In this study, the diversity of genes encoding the repeat regions and their relatedness among S. aureus strains was analyzed. Ten different protein-A types characterized by repeat numbers 4–13 were identified in a total of 293 clinical isolates. The protein-A type with 10 repeat units (10 repeats) in the Xr-region was most frequently detected in methicillin-resistant S. aureus, whereas the majority of methicillin- susceptible strains were distributed almost evenly into protein-A types with 7–11 repeats. Strains that belonged to a single coagulase type were classified into multiple protein-A types, e.g. strains with the common coagulase types II and VII were differentiated into 7 and 8 protein-A types, respectively.Nucleotide sequence analysis of the Xr-region of 42 representative strains revealed the presence of 37 different genotypes (spa types), which were constituted by a combination of several of 24 different repeat unit genotypes. Based on the similarity in arrangement of repeat unit genotypes, 34 strains with different repeat numbers were classified into 5 genetic clusters (C1–C5). The clusters C1, C2 and C3 consisted exclusively of strains with identical coagulase types II, III, and IV, respectively. These findings suggested that the protein-A gene of S. aureus has evolved from a common ancestral clone in individual clusters independently.


2017 ◽  
Vol 24 (8) ◽  
Author(s):  
Míriam A. da Silva ◽  
Thiago R. Converso ◽  
Viviane M. Gonçalves ◽  
Luciana C. C. Leite ◽  
Martha M. Tanizaki ◽  
...  

ABSTRACT Current pneumococcal vaccines are composed of bacterial polysaccharides as antigens, plain or conjugated to carrier proteins. While efficacious against vaccine serotypes, epidemiologic data show an increasing incidence of infections caused by nonvaccine serotypes of Streptococcus pneumoniae. The use of pneumococcal surface protein A (PspA) as a carrier protein in a conjugate vaccine could help prevent serotype replacement by increasing vaccine coverage and reducing selective pressure of S. pneumoniae serotypes. PspA is present in all pneumococcal strains, is highly immunogenic, and is known to induce protective antibodies. Based on its sequence, PspA has been classified into three families and six clades. A PspA fragment derived from family 2, clade 4 (PspA4Pro), was shown to generate antibodies with a broad range of cross-reactivity, across clades and families. Here, PspA4Pro was modified and conjugated to capsular polysaccharide serotype 14 (PS14). We investigated the impact of conjugation on the immune response induced to PspA4Pro and PS14. Mice immunized with the PS14-mPspA4Pro conjugate produced higher titers of anti-PS14 antibodies than the animals that received coadministered antigens. The conjugate induced antibodies with opsonophagocytic activity against PS14-carrying strains, as well as against a panel of strains bearing PspAs from five clades (encompassing families 1 and 2) bearing a non-PS14 serotype. Furthermore, mice immunized with PS14-mPspA4Pro were protected against nasal colonization with a nonrelated S. pneumoniae strain bearing PspA from clade 1, serotype 6B. These results demonstrate that the cross-reactivity mediated by PspA4Pro is retained following conjugation, supporting the use of PspA4 as a carrier protein in order to enhance pneumococcal vaccine coverage and encourage its further investigation as a candidate in future vaccine designs.


mBio ◽  
2014 ◽  
Vol 5 (2) ◽  
Author(s):  
Marieke J. Bart ◽  
Simon R. Harris ◽  
Abdolreza Advani ◽  
Yoshichika Arakawa ◽  
Daniela Bottero ◽  
...  

ABSTRACTBordetella pertussiscauses pertussis, a respiratory disease that is most severe for infants. Vaccination was introduced in the 1950s, and in recent years, a resurgence of disease was observed worldwide, with significant mortality in infants. Possible causes for this include the switch from whole-cell vaccines (WCVs) to less effective acellular vaccines (ACVs), waning immunity, and pathogen adaptation. Pathogen adaptation is suggested by antigenic divergence between vaccine strains and circulating strains and by the emergence of strains with increased pertussis toxin production. We applied comparative genomics to a worldwide collection of 343B. pertussisstrains isolated between 1920 and 2010. The global phylogeny showed two deep branches; the largest of these contained 98% of all strains, and its expansion correlated temporally with the first descriptions of pertussis outbreaks in Europe in the 16th century. We found little evidence of recent geographical clustering of the strains within this lineage, suggesting rapid strain flow between countries. We observed that changes in genes encoding proteins implicated in protective immunity that are included in ACVs occurred after the introduction of WCVs but before the switch to ACVs. Furthermore, our analyses consistently suggested that virulence-associated genes and genes coding for surface-exposed proteins were involved in adaptation. However, many of the putative adaptive loci identified have a physiological role, and further studies of these loci may reveal less obvious ways in whichB. pertussisand the host interact. This work provides insight into ways in which pathogens may adapt to vaccination and suggests ways to improve pertussis vaccines.IMPORTANCEWhooping cough is mainly caused byBordetella pertussis, and current vaccines are targeted against this organism. Recently, there have been increasing outbreaks of whooping cough, even where vaccine coverage is high. Analysis of the genomes of 343B. pertussisisolates from around the world over the last 100 years suggests that the organism has emerged within the last 500 years, consistent with historical records. We show that global transmission of new strains is very rapid and that the worldwide population ofB. pertussisis evolving in response to vaccine introduction, potentially enabling vaccine escape.


2015 ◽  
Vol 197 (17) ◽  
pp. 2762-2769 ◽  
Author(s):  
C. Allen Bush ◽  
John O. Cisar ◽  
Jinghua Yang

ABSTRACTThe structures ofStreptococcus pneumoniaecapsular polysaccharides (CPSs) are essential for defining the antigenic as well as genetic relationships between CPS serotypes. The four serotypes that comprise CPS serogroup 35 (i.e., types 35F, 35A, 35B, and 35C) are known to cross-react with genetically related type 20, 29, 34, 42, or 47F. While the structures of CPS serotype 35A (CPS35A) and CPS35B are known, those of CPS35F and CPS35C are not. In the present study, the serotypes of CPS35F and CPS35C were characterized by high-resolution heteronuclear magnetic resonance (NMR) spectroscopy and glycosyl composition analyses to reveal the following repeat unit structures:where OAc indicates O-acetylated. Importantly, CPS35F, the immunizing serotype for the production of group 35 serum, more closely resembles CPS34 and CPS47F than other members of serogroup 35. Moreover, CPS35C is distinct from either CPS35F or CPS35B but closely related to CPS35A and identical to de-O-acetylated CPS42. The findings provide a comprehensive view of the structural and genetic relations that exist between the members of CPS serogroup 35 and other cross-reactive serotypes.IMPORTANCECross-reactions of diagnostic rabbit antisera withStreptococcus pneumoniaecapsular polysaccharide serotypes are generally limited to members of the same serogroup. Exceptions do, however, occur, most notably among a group of nonvaccine serotypes that includes the members of serogroup 35 (i.e., types 35F, 35A, 35B, and 35C) and other genetically related types. The presently determined structures ofS. pneumoniaeserotypes 35F and 35C complete the structural characterization of serogroup 35 and thereby provide the first comprehensive description of how different members of this serogroup are related to each other and to types 29, 34, 42, and 47F. The structural and genetic features of these serotypes suggest the existence of three distinct capsular polysaccharide subgroups that presumably emerged by immune selection in the human host.


2019 ◽  
Vol 87 (10) ◽  
Author(s):  
Hannah M. Rowe ◽  
Beth Mann ◽  
Amy Iverson ◽  
Aaron Poole ◽  
Elaine Tuomanen ◽  
...  

ABSTRACT Acute otitis media is one of the most common childhood infections worldwide. Currently licensed vaccines against the common otopathogen Streptococcus pneumoniae target the bacterial capsular polysaccharide and confer no protection against nonencapsulated strains or capsular types outside vaccine coverage. Mucosal infections such as acute otitis media remain prevalent, even those caused by vaccine-covered serotypes. Here, we report that a protein-based vaccine, a fusion construct of epitopes of CbpA to pneumolysin toxoid, confers effective protection against pneumococcal acute otitis media for non-PCV-13 serotypes and enhances protection for PCV-13 serotypes when coadministered with PCV-13. Having cross-reactive epitopes, the fusion protein also induces potent antibody responses against nontypeable Haemophilus influenzae and S. pneumoniae, engendering protection against acute otitis media caused by emerging unencapsulated otopathogens. These data suggest that augmenting capsule-based vaccination with conserved, cross-reactive protein-based vaccines broadens and enhances protection against acute otitis media.


2013 ◽  
Vol 79 (8) ◽  
pp. 2796-2806 ◽  
Author(s):  
Masatoshi Okura ◽  
Daisuke Takamatsu ◽  
Fumito Maruyama ◽  
Takashi Nozawa ◽  
Ichiro Nakagawa ◽  
...  

ABSTRACTStreptococcus suisstrains are classified into 35 serotypes on the basis of the antigenicity of their capsular polysaccharides (CPs). CP synthesis genes are known to be clustered on the chromosome (cpsgene cluster). The entirecpsgene clusters ofS. suishave so far been sequenced in 15 serotypes and found to be located betweenorfZandaroA. In this study, to provide comprehensive information aboutS. suisCPs, we sequenced the entirecpsgene clusters of the remaining serotypes and analyzed the complete set ofS. suiscpsgene clusters. Among the 35cpsgene clusters, 22 were located betweenorfZandaroA, whereas the other 13 were flanked by other gene(s) on the chromosomes, and the chromosomal locus was classified into five patterns. By clustering analysis, the predicted products ofcpsgenes found in the 35 serotypes were assigned into 291 homology groups, and all serotypes possessed a serotype-specific gene, except for serotypes 1, 2, 1/2, and 14. Because of the presence of genes encoding flippase (wzx) and polymerase (wzy), CPs of all serotypes were thought to be synthesized by the Wzx/Wzy pathway. Our data also implied the possibility of the transfer of the entire or partialcpsgene clusters amongS. suisstrains, as well as the influence of spontaneous mutations in a single gene or a few genes on the antigenicity of some serotypes. Accumulation of these gene transfers and small-scale mutations may have generated the antigenic diversity ofS. suisCPs.


2017 ◽  
Vol 27 (6) ◽  
pp. 1249-1265 ◽  
Author(s):  
Yijun Liu ◽  
Guiyong Zhang ◽  
Huan Lu ◽  
Zhi Zong

Purpose Due to the strong reliance on element quality, there exist some inherent shortcomings of the traditional finite element method (FEM). The model of FEM behaves overly stiff, and the solutions of automated generated linear elements are generally of poor accuracy about especially gradient results. The proposed cell-based smoothed point interpolation method (CS-PIM) aims to improve the results accuracy of the thermoelastic problems via properly softening the overly-stiff stiffness. Design/methodology/approach This novel approach is based on the newly developed G space and weakened weak (w2) formulation, and of which shape functions are created using the point interpolation method and the cell-based gradient smoothing operation is conducted based on the linear triangular background cells. Findings Owing to the property of softened stiffness, the present method can generally achieve better accuracy and higher convergence results (especially for the temperature gradient and thermal stress solutions) than the FEM does by using the simplest linear triangular background cells, which has been examined by extensive numerical studies. Practical implications The CS-PIM is capable of producing more accurate results of temperature gradients as well as thermal stresses with the automated generated and unstructured background cells, which make it a better candidate for solving practical thermoelastic problems. Originality/value It is the first time that the novel CS-PIM was further developed for solving thermoelastic problems, which shows its tremendous potential for practical implications.


mBio ◽  
2011 ◽  
Vol 2 (5) ◽  
Author(s):  
Masahide Yano ◽  
Shruti Gohil ◽  
J. Robert Coleman ◽  
Catherine Manix ◽  
Liise-anne Pirofski

ABSTRACTThe use of pneumococcal capsular polysaccharide (PPS)-based vaccines has resulted in a substantial reduction in invasive pneumococcal disease. However, much remains to be learned about vaccine-mediated immunity, as seven-valent PPS-protein conjugate vaccine use in children has been associated with nonvaccine serotype replacement and 23-valent vaccine use in adults has not prevented pneumococcal pneumonia. In this report, we demonstrate that certain PPS-specific monoclonal antibodies (MAbs) enhance the transformation frequency of two differentStreptococcus pneumoniaeserotypes. This phenomenon was mediated by PPS-specific MAbs that agglutinate but do not promote opsonic effector cell killing of the homologous serotypeinvitro. Compared to the autoinducer, competence-stimulating peptide (CSP) alone, transcriptional profiling of pneumococcal gene expression after incubation with CSP and one such MAb to the PPS of serotype 3 revealed changes in the expression of competence (com)-related and bacteriocin-like peptide (blp) genes involved in pneumococcal quorum sensing. This MAb was also found to induce a nearly 2-fold increase in CSP2-mediated bacterial killing or fratricide. These observations reveal a novel, direct effect of PPS-binding MAbs on pneumococcal biology that has important implications for antibody immunity to pneumococcus in the pneumococcal vaccine era. Taken together, our data suggest heretofore unsuspected mechanisms by which PPS-specific antibodies could affect genetic exchange and bacterial viability in the absence of host cells.IMPORTANCECurrent thought holds that pneumococcal capsular polysaccharide (PPS)-binding antibodies protect against pneumococcus by inducing effector cell opsonic killing of the homologous serotype. While such antibodies are an important part of how pneumococcal vaccines protect against pneumococcal disease, PPS-specific antibodies that do not exhibit this activity but are highly protective against pneumococcus in mice have been identified. This article examines the effect of nonopsonic PPS-specific monoclonal antibodies (MAbs) on the biology ofStreptococcus pneumoniae. The results showed that in the presence of a competence-stimulating peptide (CSP), such MAbs increase the frequency of pneumococcal transformation. Further studies with one such MAb showed that it altered the expression of genes involved in quorum sensing and increased competence-induced killing or fratricide. These findings reveal a novel, previously unsuspected mechanism by which certain PPS-specific antibodies exert a direct effect on pneumococcal biology that has broad implications for bacterial clearance, genetic exchange, and antibody immunity to pneumococcus.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1667
Author(s):  
Mikhail Karushev

Fast and reversible cobalt-centered redox reactions in metallopolymers are the key to using these materials in energy storage, electrocatalytic, and sensing applications. Metal-centered electrochemical activity can be enhanced via redox matching of the conjugated organic backbone and cobalt centers. In this study, we present a novel approach to redox matching via modification of the cobalt coordination site: a conductive electrochemically active polymer was electro-synthesized from [Co(Amben)] complex (Amben = N,N′-bis(o-aminobenzylidene)ethylenediamine) for the first time. The poly-[Co(Amben)] films were investigated by cyclic voltammetry, electrochemical quartz crystal microbalance (EQCM), in situ UV‑vis-NIR spectroelectrochemistry, and in situ conductance measurements between −0.9 and 1.3 V vs. Ag/Ag+. The polymer displayed multistep redox processes involving reversible transfer of the total of 1.25 electrons per repeat unit. The findings indicate consecutive formation of three redox states during reversible electrochemical oxidation of the polymer film, which were identified as benzidine radical cations, Co(III) ions, and benzidine di-cations. The Co(II)/Co(III) redox switching is retained in the thick polymer films because it occurs at potentials of high polymer conductivity due to the optimum redox matching of the Co(II)/Co(III) redox pair with the organic conjugated backbone. It makes poly-[Co(Amben)] suitable for various practical applications based on cobalt-mediated redox reactions.


Sign in / Sign up

Export Citation Format

Share Document