scholarly journals NsdC and NsdD Affect Aspergillus flavus Morphogenesis and Aflatoxin Production

2012 ◽  
Vol 11 (9) ◽  
pp. 1104-1111 ◽  
Author(s):  
Jeffrey W. Cary ◽  
Pamela Y. Harris-Coward ◽  
Kenneth C. Ehrlich ◽  
Brian M. Mack ◽  
Shubha P. Kale ◽  
...  

ABSTRACT The transcription factors NsdC and NsdD are required for sexual development in Aspergillus nidulans . We now show these proteins also play a role in asexual development in the agriculturally important aflatoxin (AF)-producing fungus Aspergillus flavus . We found that both NsdC and NsdD are required for production of asexual sclerotia, normal aflatoxin biosynthesis, and conidiophore development. Conidiophores in nsdC and nsdD deletion mutants had shortened stipes and altered conidial heads compared to those of wild-type A. flavus . Our results suggest that NsdC and NsdD regulate transcription of genes required for early processes in conidiophore development preceding conidium formation. As the cultures aged, the Δ nsdC and Δ nsdD mutants produced a dark pigment that was not observed in the wild type. Gene expression data showed that although AflR is expressed at normal levels, a number of aflatoxin biosynthesis genes are expressed at reduced levels in both nsd mutants. Expression of aflD , aflM , and aflP was greatly reduced in nsdC mutants, and neither aflatoxin nor the proteins for these genes could be detected. Our results support previous studies showing that there is a strong association between conidiophore and sclerotium development and aflatoxin production in A. flavus.

2018 ◽  
Vol 63 (1) ◽  
Author(s):  
Eduard Melief ◽  
Shilah A. Bonnett ◽  
Edison S. Zuniga ◽  
Tanya Parish

ABSTRACT The diaminoquinazoline series has good potency against Mycobacterium tuberculosis. Resistant isolates have mutations in Rv3161c, a putative dioxygenase. We carried out metabolite analysis on a wild-type strain and an Rv3161c mutant strain after exposure to a diaminoquinazoline. The parental compound was found in intracellular extracts from the mutant but not the wild type. A metabolite consistent with a monohydroxylated form was identified in the wild type. These data support the hypothesis that Rv3161c metabolizes diaminoquinazolines in M. tuberculosis.


2018 ◽  
Vol 62 (11) ◽  
Author(s):  
Raees A. Paul ◽  
Shivaprakash M. Rudramurthy ◽  
Manpreet Dhaliwal ◽  
Pankaj Singh ◽  
Anup K. Ghosh ◽  
...  

ABSTRACT The magnitude of azole resistance in Aspergillus flavus and its underlying mechanism is obscure. We evaluated the frequency of azole resistance in a collection of clinical (n = 121) and environmental isolates (n = 68) of A. flavus by the broth microdilution method. Six (5%) clinical isolates displayed voriconazole MIC greater than the epidemiological cutoff value. Two of these isolates with non-wild-type MIC were isolated from same patient and were genetically distinct, which was confirmed by amplified fragment length polymorphism analysis. Mutations associated with azole resistance were not present in the lanosterol 14-α demethylase coding genes (cyp51A, cyp51B, and cyp51C). Basal and voriconazole-induced expression of cyp51A homologs and various efflux pump genes was analyzed in three each of non-wild-type and wild-type isolates. All of the efflux pump genes screened showed low basal expression irrespective of the azole susceptibility of the isolate. However, the non-wild-type isolates demonstrated heterogeneous overexpression of many efflux pumps and the target enzyme coding genes in response to induction with voriconazole (1 μg/ml). The most distinctive observation was approximately 8- to 9-fold voriconazole-induced overexpression of an ortholog of the Candida albicans ATP binding cassette (ABC) multidrug efflux transporter, Cdr1, in two non-wild-type isolates compared to those in the reference strain A. flavus ATCC 204304 and other wild-type strains. Although the dominant marker of azole resistance in A. flavus is still elusive, the current study proposes the possible role of multidrug efflux pumps, especially that of Cdr1B overexpression, in contributing azole resistance in A. flavus.


mBio ◽  
2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Milton T. Drott ◽  
Tracy Debenport ◽  
Steven A. Higgins ◽  
Daniel H. Buckley ◽  
Michael G. Milgroom

ABSTRACTSelective forces that maintain the polymorphism for aflatoxigenic and nonaflatoxigenic individuals ofAspergillus flavusare largely unknown. As soils are widely considered the natural habitat ofA. flavus, we hypothesized that aflatoxin production would confer a fitness advantage in the soil environment. To test this hypothesis, we usedA. flavusDNA quantified by quantitative PCR (qPCR) as a proxy for fitness of aflatoxigenic and nonaflatoxigenic field isolates grown in soil microcosms. Contrary to predictions, aflatoxigenic isolates had significantly lower fitness than did nonaflatoxigenic isolates in natural soils across three temperatures (25, 37, and 42°C). The addition of aflatoxin to soils (500 ng/g) had no effect on the growth ofA. flavus. Amplicon sequencing showed that neither the aflatoxin-producing ability of the fungus nor the addition of aflatoxin had a significant effect on the composition of fungal or bacterial communities in soil. We argue that the fitness disadvantage of aflatoxigenic isolates is most likely explained by the metabolic cost of producing aflatoxin. Coupled with a previous report of a selective advantage of aflatoxin production in the presence of some insects, our findings give an ecological explanation for balancing selection resulting in persistent polymorphisms in aflatoxin production.IMPORTANCEAflatoxin, produced by the fungusAspergillus flavus, is an extremely potent hepatotoxin that causes acute toxicosis and cancer, and it incurs hundreds of millions of dollars annually in agricultural losses. Despite the importance of this toxin to humans, it has remained unclear what the fungus gains by producing aflatoxin. In fact, not all strains ofA. flavusproduce aflatoxin. Previous work has shown an advantage to producing aflatoxin in the presence of some insects. Our current work demonstrates the first evidence of a disadvantage toA. flavusin producing aflatoxin when competing with soil microbes. Together, these opposing evolutionary forces could explain the persistence of both aflatoxigenic and nonaflatoxigenic strains through evolutionary time.


1980 ◽  
Vol 43 (5) ◽  
pp. 381-384 ◽  
Author(s):  
M. F. DUTTON ◽  
M. S. ANDERSON

The effect of a range of organophosphorus and various other compounds on production of aflatoxin by Aspergillus flavus was investigated. Five organophosphorus compounds - Chlormephos, Ciodrin, Naled, Phosdrin and Trichlorphon- at concentrations of 20 and 100 μg/ml of culture fluid were found to have activity similar to Dichlorvos, in that they lowered the level of aflatoxin produced and caused formation of several anthraquinone pigments. Two of these pigments have not previously been described, one was named Versicol and a suggested structure is presented, whilst the other compound was shown to be its acetate derivative. A rationale is suggested for the required elements of structure, which are necessary for an organophosphorus compound to have Dichlorvos-type activity. Two unrelated compounds, ammonium nitrate and Tridecanone were also found to elicit Dichlorvos-type activity. It is likely that tridecanone or its breakdown products competitively inhibit enzymes involved in aflatoxin biosynthesis. It is possible that this inhibition effect explains the lowering of aflatoxin production in lipid-rich commodities infected by A. flavus.


mBio ◽  
2020 ◽  
Vol 11 (4) ◽  
Author(s):  
Milton T. Drott ◽  
Tatum R. Satterlee ◽  
Jeffrey M. Skerker ◽  
Brandon T. Pfannenstiel ◽  
N. Louise Glass ◽  
...  

ABSTRACT The apparent rarity of sex in many fungal species has raised questions about how much sex is needed to purge deleterious mutations and how differences in frequency of sex impact fungal evolution. We sought to determine how differences in the extent of recombination between populations of Aspergillus flavus impact the evolution of genes associated with the synthesis of aflatoxin, a notoriously potent carcinogen. We sequenced the genomes of, and quantified aflatoxin production in, 94 isolates of A. flavus sampled from seven states in eastern and central latitudinal transects of the United States. The overall population is subdivided into three genetically differentiated populations (A, B, and C) that differ greatly in their extent of recombination, diversity, and aflatoxin-producing ability. Estimates of the number of recombination events and linkage disequilibrium decay suggest relatively frequent sex only in population A. Population B is sympatric with population A but produces significantly less aflatoxin and is the only population where the inability of nonaflatoxigenic isolates to produce aflatoxin was explained by multiple gene deletions. Population expansion evident in population B suggests a recent introduction or range expansion. Population C is largely nonaflatoxigenic and restricted mainly to northern sampling locations through restricted migration and/or selection. Despite differences in the number and type of mutations in the aflatoxin gene cluster, codon optimization and site frequency differences in synonymous and nonsynonymous mutations suggest that low levels of recombination in some A. flavus populations are sufficient to purge deleterious mutations. IMPORTANCE Differences in the relative frequencies of sexual and asexual reproduction have profound implications for the accumulation of deleterious mutations (Muller’s ratchet), but little is known about how these differences impact the evolution of ecologically important phenotypes. Aspergillus flavus is the main producer of aflatoxin, a notoriously potent carcinogen that often contaminates food. We investigated if differences in the levels of production of aflatoxin by A. flavus could be explained by the accumulation of deleterious mutations due to a lack of recombination. Despite differences in the extent of recombination, variation in aflatoxin production is better explained by the demography and history of specific populations and may suggest important differences in the ecological roles of aflatoxin among populations. Furthermore, the association of aflatoxin production and populations provides a means of predicting the risk of aflatoxin contamination by determining the frequencies of isolates from low- and high-production populations.


2016 ◽  
Vol 198 (19) ◽  
pp. 2682-2691 ◽  
Author(s):  
Yi Wang ◽  
Sok Ho Kim ◽  
Ramya Natarajan ◽  
Jason E. Heindl ◽  
Eric L. Bruger ◽  
...  

ABSTRACTIn bacteria, the functions of polyamines, small linear polycations, are poorly defined, but these metabolites can influence biofilm formation in several systems. Transposon insertions in an ornithine decarboxylase (odc) gene inAgrobacterium tumefaciens, predicted to direct synthesis of the polyamine putrescine from ornithine, resulted in elevated cellulose. Null mutants forodcgrew somewhat slowly in a polyamine-free medium but exhibited increased biofilm formation that was dependent on cellulose production. Spermidine is an essential metabolite inA. tumefaciensand is synthesized from putrescine inA. tumefaciensvia the stepwise actions of carboxyspermidine dehydrogenase (CASDH) and carboxyspermidine decarboxylase (CASDC). Exogenous addition of either putrescine or spermidine to theodcmutant returned biofilm formation to wild-type levels. Low levels of exogenous spermidine restored growth to CASDH and CASDC mutants, facilitating weak biofilm formation, but this was dampened with increasing concentrations. Norspermidine rescued growth for theodc, CASDH, and CASDC mutants but did not significantly affect their biofilm phenotypes, whereas in the wild type, it stimulated biofilm formation and depressed spermidine levels. Theodcmutant produced elevated levels of cyclic diguanylate monophosphate (c-di-GMP), exogenous polyamines modulated these levels, and expression of a c-di-GMP phosphodiesterase reversed the enhanced biofilm formation. Prior work revealed accumulation of the precursors putrescine and carboxyspermidine in the CASDH and CASDC mutants, respectively, but unexpectedly, both mutants accumulated homospermidine; here, we show that this requires a homospermidine synthase (hss) homologue.IMPORTANCEPolyamines are small, positively charged metabolites that are nearly ubiquitous in cellular life. They are often essential in eukaryotes and more variably in bacteria. Polyamines have been reported to influence the surface-attached biofilm formation of several bacteria. InAgrobacterium tumefaciens, mutants with diminished levels of the polyamine spermidine are stimulated for biofilm formation, and exogenous provision of spermidine decreases biofilm formation. Spermidine is also essential forA. tumefaciensgrowth, but the related polyamine norspermidine exogenously rescues growth and does not diminish biofilm formation, revealing that the growth requirement and biofilm control are separable. Polyamine control of biofilm formation appears to function via effects on the cellular second messenger cyclic diguanylate monophosphate, regulating the transition from a free-living to a surface-attached lifestyle.


2018 ◽  
Vol 62 (6) ◽  
Author(s):  
Mei-Ling Han ◽  
Yan Zhu ◽  
Darren J. Creek ◽  
Yu-Wei Lin ◽  
Dovile Anderson ◽  
...  

ABSTRACTMultidrug-resistantPseudomonas aeruginosapresents a global medical challenge, and polymyxins are a key last-resort therapeutic option. Unfortunately, polymyxin resistance inP. aeruginosahas been increasingly reported. The present study was designed to define metabolic differences between paired polymyxin-susceptible and -resistantP. aeruginosastrains using untargeted metabolomics and lipidomics analyses. The metabolomes of wild-typeP. aeruginosastrain K ([PAK] polymyxin B MIC, 1 mg/liter) and its pairedpmrBmutant strains, PAKpmrB6and PAKpmrB12(polymyxin B MICs of 16 mg/liter and 64 mg/liter, respectively) were characterized using liquid chromatography-mass spectrometry, and metabolic differences were identified through multivariate and univariate statistics. PAKpmrB6and PAKpmrB12, which displayed lipid A modifications with 4-amino-4-deoxy-l-arabinose, showed significant perturbations in amino acid and carbohydrate metabolism, particularly the intermediate metabolites from 4-amino-4-deoxy-l-arabinose synthesis and the methionine salvage cycle pathways. The genomics result showed a premature termination (Y275stop) inspeE(encoding spermidine synthase) in PAKpmrB6, and metabolomics data revealed a decreased intracellular level of spermidine in PAKpmrB6compared to that in PAKpmrB12. Our results indicate that spermidine may play an important role in high-level polymyxin resistance inP. aeruginosa. Interestingly, bothpmrBmutants had decreased levels of phospholipids, fatty acids, and acyl-coenzyme A compared to those in the wild-type PAK. Moreover, the more resistant PAKpmrB12mutant exhibited much lower levels of phospholipids than the PAKpmrB6mutant, suggesting that the decreased phospholipid level was associated with polymyxin resistance. In summary, this study provides novel mechanistic information on polymyxin resistance inP. aeruginosaand highlights its impacts on bacterial metabolism.


1986 ◽  
Vol 28 (6) ◽  
pp. 1003-1008 ◽  
Author(s):  
Michael A. Delgado ◽  
DuWayne C. Englert

The effects of single wild-type immigrants on populations of Tribolium castaneum initially homozygous for the antennapedia (ap) allele were examined in reference to gene frequencies and age structures. One population received a wild-type male, another received a wild-type female, and the control population received no wild-type immigrant. The rate of increase in the wild-type gene frequency was significantly higher in the female immigrant population. Rapid increase in heterozygosity for this population resulted in a higher average number of adults than for the other two treatment groups. No significant differences in the numbers of larvae and pupae were observed. Results indicated increased larval survivability to be the major factor in establishment of the wild-type gene and the sex of the immigrant in the rate of increase.Key words: Tribolium, population, selection, immigration, antennapedia.


2017 ◽  
Vol 199 (9) ◽  
Author(s):  
Behzad Khayatan ◽  
Divleen K. Bains ◽  
Monica H. Cheng ◽  
Ye Won Cho ◽  
Jessica Huynh ◽  
...  

ABSTRACT Most species of filamentous cyanobacteria are capable of gliding motility, likely via a conserved type IV pilus-like system that may also secrete a motility-associated polysaccharide. In a subset of these organisms, motility is achieved only after the transient differentiation of hormogonia, which are specialized filaments that enter a nongrowth state dedicated to motility. Despite the fundamental importance of hormogonia to the life cycles of many filamentous cyanobacteria, the molecular regulation of hormogonium development is largely undefined. To systematically identify genes essential for hormogonium development and motility in the model heterocyst-forming filamentous cyanobacterium Nostoc punctiforme, a forward genetic screen was employed. The first gene identified using this screen, designated ogtA, encodes a putative O-linked β-N-acetylglucosamine transferase (OGT). The deletion of ogtA abolished motility, while ectopic expression of ogtA induced hormogonium development even under hormogonium-repressing conditions. Transcription of ogtA is rapidly upregulated (1 h) following hormogonium induction, and an OgtA-GFPuv fusion protein localized to the cytoplasm. In developing hormogonia, accumulation of PilA but not HmpD is dependent on ogtA. Reverse transcription-quantitative PCR (RT-qPCR) analysis indicated equivalent levels of pilA transcript in the wild-type and ΔogtA mutant strains, while a reporter construct consisting of the intergenic region in the 5′ direction of pilA fused to gfp produced lower levels of fluorescence in the ΔogtA mutant strain than in the wild type. The production of hormogonium polysaccharide in the ΔogtA mutant strain is reduced compared to that in the wild type but comparable to that in a pilA deletion strain. Collectively, these results imply that O-GlcNAc protein modification regulates the accumulation of PilA via a posttranscriptional mechanism in developing hormogonia. IMPORTANCE Filamentous cyanobacteria are among the most developmentally complex prokaryotes. Species such as Nostoc punctiforme develop an array of cell types, including nitrogen-fixing heterocysts, spore-like akinetes, and motile hormogonia, that function in dispersal as well as the establishment of nitrogen-fixing symbioses with plants and fungi. These symbioses are major contributors to global nitrogen fixation. Despite the fundamental importance of hormogonia to the life cycle of filamentous cyanobacteria and the establishment of symbioses, the molecular regulation of hormogonium development is largely undefined. We employed a genetic screen to identify genes essential for hormogonium development and motility in Nostoc punctiforme. The first gene identified using this screen encodes a eukaryotic-like O-linked β-N-acetylglucosamine transferase that is required for accumulation of PilA in hormogonia.


2001 ◽  
Vol 183 (2) ◽  
pp. 528-535 ◽  
Author(s):  
Hsien-Ming Lee ◽  
Shiaw-Wei Tyan ◽  
Wei-Ming Leu ◽  
Ling-Yun Chen ◽  
David Chanhen Chen ◽  
...  

ABSTRACT The xps gene cluster is required for the second step of type II protein secretion in Xanthomonas campestrispv. campestris. Deletion of the entire gene cluster caused accumulation of secreted proteins in the periplasm. By analyzing protein abundance in the chromosomal mutant strains, we observed mutual dependence for normal steady-state levels between the XpsL and the XpsM proteins. The XpsL protein was undetectable in total lysate prepared from thexpsM mutant strain, and vice versa. Introduction of the wild-type xpsM gene carried on a plasmid into thexpsM mutant strain was sufficient for reappearance of the XpsL protein, and vice versa. Moreover, both XpsL and XpsM proteins were undetectable in the xpsN mutant strain. They were recovered either by reintroducing the wild-type xpsNgene or by introducing extra copies of wild-type xpsL orxpsM individually. Overproduction of wild-type XpsL and -M proteins simultaneously, but not separately, in the wild-type strain of X. campestris pv. campestris caused inhibition of secretion. Complementation of an xpsL orxpsM mutant strain with a plasmid-borne wild-type gene was inhibited by coexpression of XpsL and XpsM. The presence of the xpsN gene on the plasmid along with thexpsL and the xpsM genes caused more severe inhibition in both cases. Furthermore, complementation of thexpsN mutant strain was also inhibited. In both the wild-type strain and a strain with the xps gene cluster deleted (XC17433), carrying pCPP-LMN, which encodes all three proteins, each protein coprecipitated with the other two upon immunoprecipitation. Expression of pairwise combinations of the three proteins in XC17433 revealed that the XpsL-XpsM and XpsM-XpsN pairs still coprecipitated, whereas the XpsL-XpsN pair no longer coprecipitated.


Sign in / Sign up

Export Citation Format

Share Document